Building a Better Mouse--And Patenting It. Altering the Patent Law to Accommodate Multicellular Organisms

Marsha L. Montgomery

Follow this and additional works at: https://scholarlycommons.law.case.edu/caselrev

Part of the Law Commons

Recommended Citation
Available at: https://scholarlycommons.law.case.edu/caselrev/vol41/iss1/5

This Note is brought to you for free and open access by the Student Journals at Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Case Western Reserve Law Review by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons.
As a result of advances in the field of biotechnology, researchers develop unique, nonnaturally occurring multicellular organisms. These researchers desire patent protection for their living inventions. However, the patent laws of the United States do not adequately provide for the patenting of multicellular organisms. Furthermore, proposals to amend the patent laws are insufficient. The author analyzes current patent law and existing proposals to amend that law. The author then proposes an amendment to the patent laws to better accommodate living organisms. The proposed legislation includes a clear definition of patentable life-forms, a depository requirement, a farmer's exemption, and a researcher's exemption.

INVENTORS HAVE TRADITIONALLY labored to build a better mousetrap. More recently, however, their focus has changed; through advances in the science of biotechnology, inventors now labor to build better mice, cows, pigs, and many other multicellular organisms. The developers of these living inventions,

1. Biotechnology is defined as “any technique that uses living organisms (or parts of organisms) to make or modify products, to improve plants or animals, or to develop microorganisms for specific uses.” OFFICE OF TECHNOLOGY ASSESSMENT, PUB. No. 5, 101st Cong., 1st Sess., NEW DEVELOPMENTS IN BIOTECHNOLOGY: PATENTING LIFE 3 (1989) [hereinafter PATENTING LIFE] (special report).

like the creators of inanimate inventions, seek to protect their discoveries through the patent laws. In fact, over seventy-five patents on multicellular organisms are currently pending at the United States Patent and Trademark Office ("Patent Office"). Although the patenting of micro-organisms has been an accepted practice for several years, multicellular organisms only recently have been found to be patentable subject matter Congress, how-

3. See Ihnen, *Patenting Biotechnology: A Practical Approach*, 11 Rutgers Computer & Tech. L.J. 407, 407-08 (1985) ("At the present time patent protection is preferred to trade secret protection for biotechnology."). Patent law protection is preferred for several reasons: start up companies need tangible assets to raise capital; companies need protection of their particular areas of expertise in order to stay in business; the inventions are easily reproducible so the compromise of a small sample can result in the loss of a trade secret; and granting patent rights engenders competition which spurs new innovations. Id. at 408 n.6.

Multicellular organisms represent further evolution of living cells by "dividing the labor among different types of cells" within a single organism. B. Alberts, D. Bray, T. Lewis, M. Raff, K. Roberts & J. Watson, *Molecular Biology of the Cell* 22 (2d ed. 1989). "Multicellular organisms evolved in which cells closely related by ancestry became differentiated from one another, some developing one feature to a high degree, others another, so farming the specialized parts of one great cooperative enterprise." Id. (emphasis omitted).
ever, has not yet reacted to this change in practice.\(^7\)

In the wake of its recent decision to accept patent applications for multicellular organisms, the Patent Office faces a number of questions concerning application of the patent statutes to these new inventions. This note argues that Congress should amend the patent statutes to permit the patenting of multicellular organisms. These amendments must address the unique problems posed by patenting living inventions. Part I of this note examines the protective role of the patent system in general and outlines the basic requirements for patenting inventions.\(^8\) Part II discusses the creation of new multicellular organisms and the subsequent legal and administrative decisions affecting the patentability of these inventions.\(^9\) Part III briefly discusses the ethical and moral questions raised by the patenting of animals\(^10\) and then explores the need to include a depository requirement,\(^11\) a family farm exemption,\(^12\) and a research exemption\(^13\) in any patent law amendment governing the patentability of animals. This section concludes with an analysis of the problems which attend patenting multicellular organisms under the current law and critiques existing proposals for patent law amendments in this area.\(^14\) Part IV integrates the issues identified in Part III into proposed legislation designed to assist Congress in its attempt to draft guidelines for the patent protection of living organisms.\(^15\)

I. HISTORY AND REQUIREMENTS OF THE PATENT LAWS

Much of the controversy surrounding the patenting of multicellular organisms arises from the statutory requirements of the patent system. One must, therefore, have a general understanding of the patent system before analyzing the unique problems created within this system by patenting living organisms.

7. For a discussion of proposed legislation, see infra text accompanying notes 146-201.
8. See infra text accompanying notes 16-34.
10. See infra text accompanying notes 93-105.
11. See infra text accompanying notes 108-35.
12. See infra text accompanying notes 136-41.
13. See infra text accompanying notes 142-44.
15. See infra text accompanying notes 202-46.
A. Role of the Patent System

The Constitution grants Congress the power "[t]o promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries."16 To achieve this goal, Congress enacted the patent statutes17 and created the Patent Office to administer them.18 In turn, the Supreme Court of the United States has consistently upheld Congress' constitutional right to enact and administer patent legislation.19

The traditional role of the patent system has been to reward inventors for their ingenuity, thus providing "incentives to develop new technologies that in turn create jobs and economic health for the nation."20 A patent grants the inventor21 a seventeen year monopoly on an invention.22 Patent owners jealously guard the monopoly, or exclusivity, which their patents create. One observer has noted that "[i]n highly technical societies, patents have become a source of economic power. Corporations fight long and hard with one another to defend their patents, with the loser sometimes driven out of business or severely weakened as a result."23 Overall, the prospect of obtaining the exclusivity of patent

19. See Graham v. John Deere Co., 383 U.S. 1, 5 (1966) (the power of Congress to legislate patents is granted, and limited, by the Constitution); McClurg v. Kingsland, 42 U.S. (1 How.) 202, 206 (1843) (Congress' power to amend patent statutes is limited only by property rights in existing patents); see also E. LIPSCOMB, LIPSCOMB'S WALKER ON PATENTS § 2:2 (3d ed. 1984).
21. This note assumes that the inventor, the patent applicant, and the resulting patent owner are the same entity.
22. See 35 U.S.C. § 154 (1988) (“Every patent shall contain a grant to the patentee for the term of seventeen years [A patent conveys] the right to exclude others from making, using, or selling the invention throughout the United States.”).
rights encourages research and development of modern technology.\(^2^4\)

In exchange for patent protection, an inventor must fully disclose details of the subject invention. Specifically, an inventor must file a complete and exact description of the invention with the Patent Office.\(^2^5\) This description fully discloses the invention and the public has complete access to it.\(^2^6\) Mandatory publication of patented inventions stimulates further invention in related areas.\(^2^7\)

The eventual treatment by Congress of multicellular organism patents is uncertain. However, given the profusion of research currently accomplished by scientists despite this uncertainty, it is unlikely that denying patents for living organisms would halt biotechnological research.\(^2^8\) Although the traditional role of the patent system is to reward inventiveness, Congress has excluded certain classes of inventions from patent protection; for example, inventions related to national defense are not patentable.\(^2^9\) Con-

\(^{24}\) "The grant of patent rights has in fact encouraged research and provided useful new products including research into solutions of problems such as those associated with genetic disorders and increasing food yields." Hearings, supra note 23, at 21 (statement of Rene D. Tegtmeyer, Assistant Commissioner of Patents); Cf. Ihnen, supra note 3, at 408 n.6 (listing reasons why patent protection is appropriate for biotechnological inventions).

\(^{25}\) PATENTING LIFE, supra note 1, at 5 ("[A] written patent application [must describe] the invention in full, clear, concise, and exact terms, setting forth the best mode contemplated by the inventor, so as to enable any person skilled in the art of the invention to make and use it.").

\(^{26}\) E. Lipscomb, supra note 19, at 54 (3d ed. 1984). "Since the printed patents are available to every member of the public, all of the knowledge and scientific and technical information disclosed in these patents is accessible to all inventors, all arts, all trades and all industries." Id. at 57.

\(^{27}\) "[O]ther noninfringing improvements may be developed, and so a patent stimulates improvements by competitors who wish to remain in business." Id. at 56 (quoting Presentation given at Symposium on Patents by Charles E. Lucke, Head of Mechanical Engineering Department of the School of Engineering of Columbia University (1939)).

\(^{28}\) Diamond v. Chakrabarty, 447 U.S. 303, 317 (1980) ("The grant or denial of patents on micro-organisms is not likely to put an end to genetic research. [Furthermore,] legislative or judicial fiat as to patentability will not deter the scientific mind from probing into the unknown ")

\(^{29}\) Although Congress has seldom acted to prohibit patents on inventions, it has done so "[w]henever publication or disclosure by the grant of a patent on an invention in which the Government has a property interest might be detrimental to the national security" 35 U.S.C. § 181 (1988). For instance, Congress has forbidden the issuance of patents for inventions relating to atomic weapons: "No patent shall hereafter be granted for any invention or discovery which is useful solely in the utilization of special nuclear material or atomic energy in an atomic weapon. Any patent granted for any such invention or discovery is revoked, and just compensation shall be made therefor." 42 U.S.C. § 2181(a) (1988). For an analysis of the purpose of prohibitions based on national security,
gress may respond similarly to multicellular organisms.30

\section*{B. Requirements of the Patent Statutes}

According to the patent statutes, an applicant must meet three criteria to receive a patent on an invention: usefulness,31 novelty,32 and nonobviousness.33 In addition, an applicant must satisfy the enabling provision. This provision requires that the patent application contain a description of the invention which is sufficiently thorough to allow reproduction by a person "skilled in the art."34

\section*{II. HISTORY OF PRODUCING AND PATENTING MULTICELLULAR ORGANISMS}

Both the techniques used to produce new types of multicellular organisms and the brief history of patenting these organisms affect the way the patent statutes should be amended to accommodate these inventions. This section therefore discusses the two most prominent techniques of inventing multicellular organisms35
and summarizes the history of patenting the resulting inventions.36

A. Ways of Inventing Multicellular Organisms

1. Classic Breeding Methods

The most familiar method of creating new multicellular organisms is classic breeding. In this technique, the breeding animals are chosen for the specific physical characteristics, such as color, weight, milk production, or speed, that the breeder wants to enhance or pass on to offspring.37 This selection process is called a phenotypic selection system.38 The classic breeding method, however, is highly unpredictable. Because the initial animals are selected on the basis of manifest physical traits rather than specific genetic characteristics, a multitude of variations can result from the breeding.39

2. Transgenic Processes

A second method of inventing multicellular organisms is transgenics.40 In the early 1980s, this technique was developed and used to produce new transgenic multicellular organisms.41 Much of the current research involving transgenic animals is performed on mice,42 although some experiments focus on creating new types of cattle, pigs, sheep, poultry, and fish for commercial use.43

36 See infra text accompanying notes 50-92.

38 Id.

39 See id. at 44 (quoting Ex parte Schreiner, 1 BGHSt IIC 136, 141-42 (1969)).

40 Transgenics is the alteration of animals through the addition of DNA (deoxyribonucleic acid) from a source other than parental germplasm to their germplasm. The added DNA is usually removed from a different species of animal or from a human. PATENTING LIFE, supra note 1, at 93-94.

41 See id. at 94-95.

42 Mice are commonly used for transgenic research because they are warm-blooded and possess many genetic and physiological similarities to humans; they are small and easy to maintain in large numbers at a modest cost; their genetics and physiology are relatively well understood; and they are available in a variety of genetically consistent lines. Id. at 95 (table 6-1).

43 “[T]ransgenic animals are expected to have commercial value in three primary areas: agriculture, biomedical research, and the pharmaceutical industry.” Dresser, Ethical and Legal Issues in Patenting New Animal Life, 28 Jurimetrics J. 399, 407 (1988). In agriculture transgenic development of more healthy and efficient food producers has great commercial potential. Id. at 407-08. Biomedical researchers will be able to use transgenic animals for the study of human disease and treatment. Id. at 408. Transgenic
Transgenic animals are produced by a variety of means, the most common of which is microinjection. In microinjection, highly purified copies of the desired gene are injected directly into a fertilized animal egg which is then implanted into the female. It is estimated that no more than five percent of the injected eggs will actually develop into transgenic animals. Microinjection is therefore considered an inefficient and labor intensive method of altering animals.

At present researchers do not understand fully how to direct injected DNA to the appropriate site within the host animal's genetic material. However, the process is an improvement over classic breeding methods for three reasons: (1) a line of animals possessing the desired trait can be developed in a significantly shorter period of time; (2) the desired trait can be transferred with substantial certainty and unaccompanied by undesirable characteristics; and (3) genes from almost any organism can be inserted into another organism, whereas classic breeding is restricted to closely related species.

B. History of Patenting Multicellular Organisms

1. Diamond v Chakrabarty

In Diamond v Chakrabarty, the Supreme Court of the United States considered the question of whether a micro-organism is patentable subject matter under the United States patent laws. Chakrabarty, a microbiologist, sought to patent a genetically

animals may provide pharmaceuticals through "molecular farming." This process involves genetically altering animals to produce valuable chemicals which are then used in the manufacture of pharmaceuticals. Id. at 408-09. While transgenic animals will likely be produced for agricultural use in the near future, many researchers believe "that it may be 10 years or more before commercial herds or flocks of transgenic livestock are produced." PATENTING LIFE, supra note 1, at 98.

44. PATENTING LIFE, supra note 1, at 94. Other techniques include "cell fusion, electroporation, [and] retroviral transformation." Id.

45. Id.

46. Id. at 95. One "accomplished laboratory" has a success rate of between 1% and 2%. Id. at 96. The number of intervening stages through which the fertilized egg must pass before becoming a transgenic animal accounts for this low rate. Of the fertilized eggs, not all are suitable for injection; of those injected, not all survive; of those which survive injection to be implanted, very few result in live births; and of those born alive, not all are transgenic animals. Id.

47. Id. at 95.

48. Id. at 95-96.

49. Id. at 96-97.

engineered bacterium which degrades crude oil; a characteristic which makes it extremely valuable for controlling oil spills. The patent examiner denied Chakrabarty's patent claim for the bacteria itself, but allowed his claims for products and processes involving the bacteria. The examiner denied the bacteria patent, finding that a micro-organism is a "product of nature" which, as a living thing, cannot be patented under 35 U.S.C. § 101.

The Supreme Court focused its inquiry on whether Chakrabarty's micro-organism was a nonpatentable, naturally-occurring phenomenon or a patentable "manufacture" or "composition of matter." The majority reasoned that "Congress plainly contemplated that the patent laws would be given wide scope." However, the Court emphasized that Congress did not intend section 101 to cover every discovery and that the "laws of nature, physical phenomena, and abstract ideas" are not patentable. The Court distinguished Chakrabarty's micro-organism as being "markedly different" from any micro-organism found in nature and as having "significant utility." Thus, "[Chakrabarty's] discovery [was] not nature's handiwork, but his own; accordingly it is patentable subject matter under § 101."

The majority rejected the Patent Office's argument that Congress had excluded living organisms from patentability by enacting the Plant Patent Act and the Plant Variety Protection Act.

51. Id. at 305 n.2. Until Chakrabarty's invention, biological control of oil spills involved the use of a mixture of several bacteria, each of which would degrade one component of crude oil. The Chakrabarty micro-organism, by breaking down more than one component of crude oil, created a more rapid and efficient way of attacking oil spills. Id.

52. Id. at 305-06. The examiner issued Chakrabarty patents on an "inoculum" used to float the bacteria to the oil spill and the process used to actually produce the bacteria. Id.

53. Id. at 306 (citing 35 U.S.C. § 101 (1988)).

55. 447 U.S. at 308.

56. Id. at 309.

57. Id. at 310.

58. Id.

59. Id. at 310-11. Essentially, the Patent Office argued that these acts were necessary to create exceptions to Congress' prevailing rule against patenting life-forms. Id.

These statutes provided patent protection for specific living organisms only. The Court examined the appropriate legislative history and determined that Congress intended to distinguish products of nature, both living and non-living, from human-made inventions. The Court further postulated that bacteria were excluded from the Plant Variety Protection Act because Congress approved of either an earlier case which held that bacteria are not plants under the Plant Patent Act or prior patents issued for bacteria. Thus, neither the Plant Patent Act nor the Plant Variety Protection Act precluded the patenting of Chakrabarty’s micro-organism as the result of “human ingenuity and research.”

The Supreme Court also rejected the Patent Office’s argument that micro-organisms are not patentable until Congress expressly authorizes such protection. The Court held that “[a] rule that unanticipated inventions are without protection would conflict with the core concept of the patent law that anticipation undermines patentability.” Further, “Congress employed broad general language in drafting § 101 [of the patent statutes] precisely because [revolutionary] inventions are often unforeseeable.” This liberal statutory interpretation is extremely favorable to inventors who wish to patent multicellular organisms.

All members of the Chakrabarty Court agreed that congressional resolution of the life-form patentability issue would be welcome. Chief Justice Burger, writing for the majority, observed:

60. Chakrabarty, 447 U.S. at 313. Justice Brennan rejected the majority’s interpretation of the Plant Patent Act and the Plant Variety Protection Act. Instead, he took the position that Congress intended to make a specific exception to the general rule that no living organisms are patentable, even if not naturally occurring. Id. at 320 (Brennan, J., dissenting). Brennan argued that bacteria are not patentable because they are living organisms which do not fall within the “carefully limited language” of these two Acts. Id. at 319.

61. Id. at 313-14 (citing In re Arzberger, 112 F.2d 834 (1940) (noting that the term “plant” was intended by Congress to be used in its popular sense, and not to be limited to its strict scientific meaning)).

62. Id. at 314 n.9 (noting that the Patent Office granted Louis Pasteur a patent on “yeast free from organic germs of disease” in 1873 and granted two living micro-organism patents in 1967 and 1968).

63. Id. at 313.

64. Id. at 314.

65. Id. at 316.

66. Id.
The choice we are urged to make is a matter of high policy for resolution within the legislative process after the kind of investigation, examination, and study that legislative bodies can provide and courts cannot. Congress is free to amend § 101 so as to exclude from patent protection organisms produced by genetic engineering. Or it may choose to craft a statute specifically designed for such living things. 67

Justice Brennan, writing in dissent, favored "leav[ing] to Congress the decisions whether and how far to extend the patent privilege into areas where the common understanding has been that patents are not available." 68 Thus, both the majority and the dissent in Chakrabarty agree that congressional action is warranted.

2. Ex parte Allen 69

The Chakrabarty decision spurred growth of the biotechnology industry in the 1980s because it sustained the possibility of patenting micro-organisms. 70 Inventors seeking patents on multicellular organisms in particular were further encouraged by the decision of the Board of Patent Appeals and Interferences in Ex parte Allen. Although the patent in Allen was ultimately denied, the Board's reasoning supported the patentability of human-made, multicellular life-forms.

In Allen, the applicants sought to patent polyploid oysters which, because of their sterility, do not use their body weight to reproduce and therefore remain edible year round. 71 The patent examiner rejected the application because "the animal produced by the method claimed is 'controlled by laws of nature and not a manufacture by man that is patentable.'" 72 The Board of Patent Appeals and Interferences affirmed the patent examiner's rejection, but it disagreed with the conclusion that the oysters were not patentable solely because they were living organisms. 73 Instead, the Board based its affirmance on the fact that polyploidy had been produced previously in another oyster species. The Allen process, therefore, failed the nonobviousness test of section 103 of the

67. Id. at 317-18.
68. Id. at 319 (Brennan, J., dissenting).
70. PATENTING LIFE, supra note 1, at 8. For data on the number of biotechnology patents pending, see supra note 4 and accompanying text.
71. See Allen, 2 U.S.P.Q.2d at 1425, 1428.
72. Id.; at 1426 (quoting the patent examiner).
73. See id. at 1426-27.
The board also reiterated the *Chakrabarty* holding that patent laws should be given wide scope to include human-made life-forms. Although the applicants in *Allen* did not receive a patent on their oysters, the board clearly endorsed the Supreme Court's view that section 101 allowed patents to be issued for "'anything under the sun that is made by man.'"

3. The Patent and Trademark Office's Announcement

On April 7, 1987, four days after the *Allen* decision, the Patent Office announced that it would accept applications for patents on "nonnaturally occurring nonhuman multicellular living organisms [sic], including animals." The Patent Office's announcement specified that, in order to be patentable, an animal must be "given a new form, quality, properties or combination not present in the original article existing in nature in accordance with existing law." Furthermore, an organism which includes human genetic material should be identified as being "non-human" in order to avoid rejection because human beings are still not patentable subject matter according to a constitutional prohibition on property rights in humans.

The Patent Office's decision to allow patents on genetically altered animals has created some controversy. For example, various animal rights groups and individual farmers filed a lawsuit against the Commissioner of the Patent Office and the Secretary of Commerce alleging that the Patent Office's decision violated

74. See id.
75. Id. at 1426.
76. Id. (quoting Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980)).
78. Id.
79. Id.
80. Announcement, supra note 77.
81. U.S. CONST. amend. XIII, § 1 ("Neither slavery nor involuntary servitude shall exist within the United States "); Announcement, supra note 77 ("A claim directed to or including within its scope a human being will not be considered to be patentable subject matter [because] exclusive property right in a human being is prohibited by the Constitution.").
82. See, e.g., Patents, supra note 2, at A-6 (Representative Robert Kastenmeier "emphasized that Congress, not the Patent Office, should determine whether the law allow[s] genetically altered animals to be patented.").
appropriate procedures for administrative rulemaking. A federal
district court held that the rule was properly promulgated, but did
not consider the larger question of whether the Patent Office ex-
ceeded its authority by deciding to issue animal patents. The
court did comment, however, that the Patent Office’s “interpreta-
tion of Chakrabarty as having application beyond unicellular or-
ganisms [was] a fair one.”

In April 1988, the Patent Office granted the first patent on a
multicellular organism. The patent was issued to Harvard Uni-
versity, where researchers in genetic engineering had developed a
mouse which was particularly susceptible to cancer. Harvard gave
an executive license to practice the “OncoMouse” patent to E.I.
du Pont de Nemours & Co. (“Du Pont”) because it was the major
research sponsor Du Pont plans to license its OncoMouse inven-
tion in two ways. First, academic researchers will be required to
pay $50.00 per mouse, but will not be charged for the license.

However, these researchers will be limited to reproducing only
100 OncoMice. Second, commercial groups that plan to profit
from OncoMouse products will pay the $50.00 per mouse charge
and may be required to pay an additional licensing fee in ad-

84. Plaintiffs claimed “that the defendants have promulgated a rule in violation of the
Administrative Procedure Act by failing to provide for a period of public notice
and comment [and by] promulgating a rule] in excess of defendants' statutory au-
thority.” Id. at 729 (citations omitted).
85. Id. at 732.
86. Id. at 731.
87. PATENTING LIFE, supra note 1, at 12. The patent describes “[a] transgenic non-
human mammal all of whose germ cells and somatic cells contain a recombinant activated
oncogene sequence introduced into said mammal, or an ancestor of said mammal, at an
embryonic stage said mammal being a rodent said rodent being a mouse.” Trans-
(1988).
88. PATENTING LIFE, supra note 1, at 12. Du Pont stated that it received about
10,000 pre-orders for OncoMouse, with an estimated market value in the 1990s ranging
from $1,000,000 to $25,000,000. Kaplan, supra note 2, at 62.
89. Kaplan, supra note 2, at 62.
90. Id.
91. Id.
92. Id. Du Pont believes that because use of the mouse could “speed up [] research
by as much as a year [and] ‘[t]ime has value,’” it is justified in claiming an interest
III. CONTROVERSY AND CURRENT PROPOSALS

The Patent Office's decision to allow patenting of multicellular animals has ignited controversy over research in biotechnology and bioengineering in general, and the patenting of animals in particular. This section briefly surveys the moral and ethical issues surrounding the Patent Office's decision, summarizes the particular problems associated with patenting animals, and critiques specific proposals that have been presented to Congress. This information provides a useful background for the development of effective legislation.

A. The Controversy Over Patenting Animals

Although the Patent Office's announcement\(^93\) states the agency's position that multicellular animals are patentable, it does not address concerns that animals are not appropriate subject matter for patent law. Those who favor patenting animals claim that restricting patents on animals would curtail research in biotechnology and subsequently jeopardize thousands of jobs as well as the nation's ability to compete globally in the agricultural market.\(^94\) Those who oppose continued patenting of multicellular organisms argue that encouraging such inventions will inevitably cause numerous ethical and environmental problems.\(^95\)

Opponents of animal patentability focus their arguments on controversial biotechnological research rather than on specific problems with patenting the results of the research.\(^96\) For example, opponents argue that advances in biotechnology interfere with

\(^93\) For a discussion of the announcement, see supra text accompanying notes 77-86.

\(^94\) Dresser, supra note 43, at 409.

\(^95\) It is beyond the scope of this note to engage in further examination of these criticisms. For a more detailed discussion of the moral and ethical issues surrounding animal patenting and biotechnology, see PATENTING LIFE, supra note 1, at 17-18; Dresser, supra note 43, at 407-09; Merges, supra note 29, at 1058-62; Note, Genetic Engineering: Innovation and Risk Minimization, 57 GEO. WASH. L. REV. 100, 114-19 (1988). For a discussion on environmental concerns arising from the patenting of multicellular organisms, see Dresser, supra note 43, at 410-14 (discussing general concerns with "interference with the natural world" and emphasizing doubts regarding capacity for environmental risk assessment); Merges, supra note 29, at 1056-58 (discussing fear of immediate ecological disaster, indirect effects of population imbalance, and gene pool depletion); Note, supra, at 119-25 (1988).

\(^96\) See, e.g., Dresser, supra note 43, at 424 ("[M]any of the fears expressed about animal patenting bear on the broader issue of whether scientists should be permitted to manipulate higher animal life at all.").
the natural world by blurring the line between species, thus destroying "species integrity." Another commonly articulated argument is that patenting multicellular organisms will increase experimentation and subsequent suffering of laboratory animals. Opponents also claim that advances in biotechnology that involve the addition of human genes to animals may eventually lead to the devaluation of human life.

Proponents of animal patentability argue that limiting patent law is not an appropriate way to discourage or ban research in biotechnology. Unlike the Environmental Protection Agency, the National Institutes of Health, the Food and Drug Administration, and the United States Department of Agriculture, the Patent Office is not a "watchdog agency." Rather, its purpose is to administer the patent statutes as developed by Congress.

Patent law, however, has been employed in the past to prohibit the production of innovations deemed "bad" or "immoral." From the nineteenth century until halfway through the twentieth century, for example, courts were willing to withhold patents on "inventions used to defraud buyers" as well as gambling machines. Congress has since seen fit to statutorily exclude only one type of invention from patent protection — nuclear weapons.

Although the patent statutes may not be the appropriate fo-

97. *Id.* at 410-14. The term "species integrity," coined by Jeremy Rifkin, refers to the preservation of the natural genetic code of a species, particularly humans. In a philosophical sense, the genetic code is an inherent aspect of one's being. Thus, proponents of "species integrity" view tampering with the genetic code as altering the nature of humanity. *Id.* at 411.

98. *Id.* at 410, 422-24.

99. *Id.* at 410, 415-17. While researchers have not yet succeeded in developing animal-human hybrids, the creation of hybrids of sheep and goats suggests that the possibility is not remote. *Id.* at 415.

100. See *Hearings*, supra note 23, at 576 (letter from Donald W Peterson and Donald J. Quigg, Assistant Secretary and Commissioner, Patents and Trademarks, to Senator DeConcini) (asserting that moral and ethical issues associated with the patenting of animals are resolved more appropriately by the Department of Agriculture and regulatory agencies since patents focus solely on the merits of the invention and are "neutral with respect to [moral] issues."); Merges, *supra* note 29, at 1067-68 ("The patent system normally is not the proper place to conduct technology assessment [moral problems], if they eventually arise, should be dealt with outside the patent law.").

103. See Merges, *supra* note 29, at 1062.

104. See *supra* note 29 and accompanying text.
rum for addressing the moral and ethical concerns surrounding animal patentability, ignoring these issues will not lead to a resolution. Congress has recognized the gravity of this situation and recommended formation of the Biotechnology Science Coordinating Committee. Such a committee is better able to address any controversial matters.

B. Problems With Patenting Animals Under Current Patent Law

Although the Supreme Court declared that a human-made multicellular organism is patentable in the same manner as any other invention, the fact remains that an animal is nothing like a mousetrap or an electronic appliance or any other kind of routinely patented invention. Contemporary patent law, however, does not clearly indicate how an applicant for an animal patent might satisfy the applicable statutory requirements; nor does it provide for the special uses of animals in agriculture and research. This section examines specific problems faced by inventors applying for patents on multicellular organisms.

1. Depository requirements

One problem encountered by animal patent applicants is satisfying the enabling requirement of section 112. It is unclear...
whether a written description of an animal will enable one "skilled in the art" to accurately reproduce the invention.109 Currently, when the Patent Office determines that a written description of an organism is inadequate, the applicant may deposit a sample of the "biological starting material" to supplement the description.110 However, Patent Office Commissioner Donald Quigg has stated that no deposit is needed when "a new breed is reproduced by such common genetic engineering techniques as the injection of readily available DNA into an ovum of a well-known breed."111 In other words, no deposit is necessary when widely used transgenic methods and materials are employed to produce the animal.

Because inventors of multicellular organisms often have difficulty satisfying the patent statutes with adequate descriptions of living creations, they face an additional cost that no other inventors face: the cost of making deposits.112 According to the Patent Office, animal patenting is unique in this respect. "No other arts are known where words alone may be incapable of describing an invention sufficiently to enable one skilled in the art to make and use it in a reproducible manner."113

If classically bred animals are defined as patentable inventions,114 even more deposit questions will arise. Classically bred animals are the offspring of animals that externally exhibit desira-
A depository for classically bred animals would therefore have to house "living, breathing, reproducing animals." This situation may present insurmountable problems. For instance, the animals would have to be kept apart to prevent the spread of disease which could infect or destroy all of the deposits. Furthermore, the depository would have to maintain more than one mating pair for each patent as a precaution against death or infertility.

The Patent Office recently promulgated the Rules for Deposit of Biological Materials for Patent Purposes ("Rules"). Under the Rules, biological material includes any "material that is capable of self-replication either directly or indirectly." Applicants must deposit biological material when it is necessary to fully comply with the requirements of section 112; that is, when a written description of the invention would be inadequate. A deposit of the biological material is not required, however, if the original material is known and readily available to the public or can be made or isolated easily. The patent examiner determines the ne-

115. See supra notes 37-39 and accompanying text.
116. Clark, supra note 110, at 449.
117. Id.
118. Id.
120. Id. (to be codified at 37 C.F.R. § 1.801). There remains the question of whether the deposit of a mating pair of animals would satisfy the self-replication requirement. Although the pair could certainly reproduce itself, it would differ vastly from the representative examples included in the Rules: "Representative examples include bacteria, fungi including yeast, algae, protozoa, eukaryotic cells, cell lines, hybridomas, plasmids, viruses, plant tissue cells, lichens and seeds." Id. The comments to this section state that this list is "non-exhaustive" and that self-replication includes "those situations where the biological material is only capable of replication when another self-replicating biological material is present." Id. at 34,874 (discussing rule to be codified at 37 C.F.R.: § 1.801). However, these rules are intended to address procedural matters in the deposit of biological material for patent purposes, and are not designed to decide such substantive issues as whether a deposit of a particular organism or material would be recognized or needed to be made for the purposes of satisfying the statutory requirements for patentability under 35 U.S.C. § 112
121. Id. at 34,864 (discussing rule to be codified at 37 C.F.R. § 1.802(b)).
122. Id. Some factors to be considered in determining whether a biological material is known and readily available to the public include:

commercial availability, references to the biological material in printed publications, declarations of accessibility by those working in the field, evidence of predictable isolation techniques, or an existing deposit made in accordance with these rules. Each factor may or may not be sufficient alone to demonstrate that
cessity and adequacy of each deposit. The Rules also allow an applicant to deposit biological material even when the claimed invention can be effectively described in writing, does not rely on biological material, or is not itself biological material.

According to the Rules, a patent applicant who makes a deposit of biological material must do so at an appropriate facility. An appropriate facility is any International Depository Authority or other depository recognized as suitable by the Patent Office. Currently, there are no depositories willing to accept animals for deposit due to such factors as prohibitive maintenance costs, possible adverse publicity, uncertain disposition of offspring, and impracticality of keeping samples alive for lengthy time periods. An applicant must make any necessary deposit of biological material either before filing the patent application or while the application is pending. If a deposit becomes contaminated or loses its ability to function as claimed, it must be replaced with a supplemental deposit upon immediate notification to the depositor. The depository will maintain a deposit "for a term of at least thirty years and at least five years after the most recent request for the furnishing of a sample of the deposit was received by the depository" Finally, the deposit must be capable of self-replication, either directly or indirectly, at the time of

123. Id. at 34,875, (discussion of rule to be codified at 37 C.F.R. § 1.802).
124. Id. at 34,882 (to be codified at 37 C.F.R. § 1.809).
125. Id. at 34,868 (discussion of rule to be codified at 37 C.F.R. § 1.802(a)).
126. The comments to the rules list nineteen depositories which are recognized as International Depository Authorities ("IDA"), three of which are in the United States: the Agricultural Research Culture Collection, the American Type Culture Collection, and In Vitro International, Inc. Id. at 34,876 (discussing rule to be codified at 37 C.F.R. § 1.803). Criteria for determining the adequacy of a non-IDA depository include whether the depository has had a continuous existence, is independent of the depositor's control, possesses sufficient staff and facilities to preserve the deposit properly, follows sufficient safety measures to guard against loss of biological material, exhibits impartiality and objectivity, furnishes samples of deposited matter in a proper and timely manner, and promptly notifies depositors if unable to furnish samples. Id. at 34,881 (to be codified at 37 C.F.R. § 1.803).
127. Id. at 34,881 (to be codified at 37 C.F.R. § 1.803).
128. See Patenting Life, supra note 1, at 20.
130. Id. at 34,882 (to be codified at 37 C.F.R. § 1.806). This rule highlights the difficulty of patenting classically bred animals. Maintaining a deposit of an animal for at least 30 years would be extremely difficult because most animals do not live that long and animals that do survive for 30 years would be expensive to maintain over that period.
the deposit.131
The written description of each patented invention is available to the public.132 Likewise, the public must have access to a deposit made as part of a patent application.133 However, the depositor may require that a depository refuse to furnish a sample unless the third party’s request is in writing, is dated, and contains the name and address of the requesting party.134 The depository must also communicate this information, in writing, to the depositor.135

2. Family farm exemption

Other concerns about patenting animals revolve around economic fears, particularly the economic survival of family farms. Some farmers are concerned that, in order to breed and sell their animals, they will have to pay large licensing fees and royalties to biotechnology companies holding the patents.136 This is a valid concern under current patent laws, as intentional breeding of patented animals probably amounts to patent infringement.137

The opposing argument is that patenting farm animals will pose no significant economic problems for farmers. The cost of any patented good, including an animal, is constrained by the cost of available substitutes.138 Thus, if the cost of a patented animal or the right to breed it exceeds the benefit to the farmer in terms of increased production and profit, the farmer will buy an unpatented animal.139

A farmer’s exemption for patented animals would allow farmers to use patented animals and their offspring for normal

131 See id. at 34,882 (to be codified at 37 C.F.R. § 1.807).
134 Id.
135 Id.
137 Merges, supra note 29, at 1068. Patent Commissioner Donald Quigg confirmed this assumption in a letter to Senator Dennis DeConcini: “Unauthorized acts of reproduction (i.e., the breeding of patented animals to increase their numbers) would, therefore, seem to be an infringement. This view is consistent with the doctrine of patent law that a purchaser of a patented invention may repair, but not reconstruct, it.” Hearings, supra note 23, at 579.
138 See Hearings, supra note 23, at 168 (testimony of Reid G. Adler, attorney with Finnegan, Henderson, Farabow, Garrett & Dunner).
139 Id.
breeding purposes on their farms.140 However, an exemption may remove economic incentives for developing genetically engineered animals. The research leading to development of these animals is expensive; thus, developers depend on royalty revenues from their inventions.141

3. Research exemption

Like farmers, researchers have a special interest in protecting themselves from patent infringement suits involving patented multicellular organisms. Under a research exemption to the patent law, a researcher is allowed to experiment with a patented animal without fear of an infringement suit so long as he or she is involved in "bona fide research activities designed to further scientific knowledge."142 Current case law, but not statutory law, holds that

where [the patented invention] is made or used as an experiment, whether for the gratification of scientific tastes, or for curiosity, or for amusement, the interests of the patentee are not antagonized, the sole effect being of an intellectual character in the promotion of the employer's knowledge or the relaxation afforded to his mind.143

This experimental use exception is interpreted narrowly by courts.144

140 See Merges, supra note 29, at 1070-73. The exemption would be similar to the farmer's crop exemption provided by the Plant Variety Protection Act:

[This title] shall not infringe any right hereunder for a person to save seed produced by him from seed obtained [from] the owner of the [patented] variety [and] it shall not infringe any right hereunder for a person, whose primary farming occupation is the growing of crops for sale for other than reproductive purposes, to sell such saved seed to other persons so engaged

142 Merges, supra note 29, at 1073.

143 Roche Prods. v. Bolar Pharmaceutical Co., 733 F.2d 858, 862 (Fed. Cir. 1984) (emphasis omitted) (quoting W. Robinson, The Law of Patents for Useful Inventions § 898 (1890)). Although there is no research exemption in the general patent statutes, Congress did include one in the Plant Variety Protection Act, providing that the "use and reproduction of a protected variety for bona fide research shall not constitute an infringement" 7 U.S.C. § 2544 (1988).

144 See, e.g., Roche Prods., 733 F.2d at 863 (holding that the experimental use exception is not available when the patented invention is used to further the infringer's business interests); American Standard, Inc. v. Pfizer, Inc., 722 F. Supp. 86, 102-03 (D. Del. 1989) (holding that experimental use exception is limited to medical devices used to obtain information for the Food and Drug Administration).
The Patent Office and the Supreme Court agree that living organisms are patentable. However, many details must be worked out by Congress so these inventions receive proper patent protection. The need for a depository requirement, a family farm exemption, and a research exemption are issues that Congress must address in order to clarify the process of patenting multicellular organisms.

C. Critique of proposed legislation

Although Congress has not passed legislation amending the patent laws to provide for multicellular organisms, it has considered several bills on this subject. In fact, animal patenting legislation has been proposed during each of the past three sessions of Congress. While Congress recognizes the need for reform, it has failed to produce an adequate bill. Nevertheless, an examination of the proposed bills exposes potential benefits and detriments that should be considered in any future proposals.

1. H.R. 3119, S. 2111, and H.R. 3247

H.R. 3119, S. 2111 and H.R. 3247 propose prohibiting the issuance of patents for genetically engineered animals. H.R. 3119 places a two year moratorium on such patents because "the patenting of genetically engineered invertebrate and vertebrate animals raises profound economic, environmental, and ethical

145. See infra notes 146-86.
149. H.R. 3119 provides that for a two year period:

[V]ertebrate or invertebrate animals, modified, altered, or in any way changed through genetic engineering technology shall not be considered matter within the confines of patentability and shall not be patentable within the meaning of section 101 or section 102 Any patent previously granted for any such animals is hereby revoked.

S. 2111 would amend the patent law so that "[v]ertebrate or invertebrate animals, modified, altered, or in any way changed through engineering technology, including genetic engineering, shall not be considered matter within the confines of patentability and shall not be patentable Any patent previously granted for any such animals is hereby revoked." S. 2111, supra note 147, § 1 (amending 35 U.S.C. § 105).

H.R. 3247 provides that "[d]uring the 2-year period any vertebrate or invertebrate animal that is modified, altered, or in any way changed through genetic engineering technology shall not be considered to be patentable subject matter" H.R. 3247, supra note 148, § 1 (amending 35 U.S.C. § 105).
questions which Congress has not had the opportunity to fully address. According to Representative Cardin, sponsor of H.R. 3247, a moratorium "provide[s] [Congress] with the necessary time to determine whether or not we need to make improvements in our patent law to deal directly with the patenting of animals." S. 2111 goes even further by banning the patenting of animals completely. Under H.R. 3119 and S. 2111, any microorganism patent previously granted is revoked, whereas H.R. 3247 leaves existing patents intact and forbids only future patents. Furthermore, H.R. 3247 is not applicable to any animal that is subject to regulatory review and approval under federal environmental, health, safety, and bioethical standards before it is commercialized.

Despite the intention of these bills, it is unlikely that a moratorium would effectively halt research in biotechnology. The Supreme Court has also predicted this result: "The large amount of research that has already occurred when no researcher had sure knowledge that patent protection would be available suggests that legislative fiat as to patentability will not deter the scientific mind from probing into the unknown any more than Canute could command the tides." Instead, a moratorium would yield undesirable results. First, adoption of any of these three bills would mark the first time in history that patent legislation has overthrown an existing Patent Office policy. According to the Patent Office, "[a] moratorium would create the unfortunate precedent of deferring patent rights on grounds totally unrelated to the merits of the invention, thus counteracting our efforts to strengthen intellectual property rights for American industry." The undesirable precedent may encourage future limitations on patents issued for other types of inventions, a purpose for which the patent

150. H.R. 3119, supra note 146, § 1, at 1.
152. S. 2111, supra note 147, § 1.
153. H.R. 3119, supra note 146, § 1; S. 2111, supra note 147, § 1.
154. See H.R. 3247, supra note 143.
155. Id. § 1.
158. Hearings, supra note 23, at 576 (letter from Donald Quigg, Assistant Secretary and Commissioner of Patents and Trademarks, to Senator DeConcini).
system is not designed. Second, the revocation of a previously granted patent may constitute a taking which requires the federal government to compensate the patent owner. Although a moratorium might give Congress some “breathing room” to contemplate the answers to “profound economic, environmental and ethical questions,” it may also result in unacceptable consequences.

A moratorium on patenting animals would cause one further problem: without patent protection, developers of multicellular organisms may decide to pursue trade secret protection for their inventions. Under trade secrecy, an inventor conceals important information about an invention from competitors in order to prevent duplication of the invention. If the information is disclosed, the protection is lost forever. Thus, “a trade secret owner has a strong incentive to prevent disclosure of his discovery and to invest time and money controlling access to his invention.” Should inventors resort to trade secrecy protection, fewer new products might enter the market, “thereby preventing public access to life-saving inventions.” Furthermore, trade secret protection can be complex and expensive to establish and maintain, causing hard-

159. See Note, supra note 29, at 324 (arguing that the Patent Office and patent system do not serve a “watchdog” function).

160. See H.R. 3119, supra note 146, § 1 (“untimely action on this issue could unnecessarily expose patent holders to the revocation of their patents and expose the Government to financial liability for their restitution”). While it is beyond the scope of this note to fully explore the constitutional “takings clause” issue as it relates to patenting multicellular organisms, it is important to note that trying to resolve these issues by overruling retrospectively the announced policy of the Patent Office could create even more problems than it solves. Congress seemed to be aware of this “takings clause” issue when it included a “right to compensation” section in its amendment to the patent law disallowing patents on inventions “in which the Government has a property interest” because of national security. 35 U.S.C. §§ 181, 183 (1988).

161. H.R. 3119, supra note 146, § 1.

163. See PATENTING LIFE, supra note 1, at 118. “Companies opting for secrecy rely on trade secrets and seek to conceal crucial details or key processes from competitors.” Id. (emphasis deleted).

164. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 490 (1973) (“The holder of a trade secret takes a substantial risk that the secret will be passed on to his competitors, by theft or by breach of a confidential relationship.”); PATENTING LIFE, supra note 1, at 46 (“Once the information becomes publicly known it loses its status as a trade secret.”); Note, supra note 95, at 108 (“A trade secret is valuable only as long as it is kept secret.”).

165. See Note, supra note 95, at 108.

166. Id. at 109.

167. Note, supra note 157, at 444.
ship for new companies trying to enter the market.¹⁶⁸

2. H.R. 4970¹⁶⁹

Unlike the bills previously discussed,¹⁷⁰ H.R. 4970 does not impose a moratorium on patenting multicellular organisms. Instead, H.R. 4970 implies that such organisms are patentable subject matter, even though the bill never expressly designates them as patentable. H.R. 4970 provides a farmer's exemption,¹⁷¹ a research exemption,¹⁷² and a voluntary deposit provision to satisfy patent enabling requirements.²⁷³ The farmer's exemption protects the small farmer from patent infringement liability based on breeding, using, or selling transgenic farm animals, unless the activity is done for "reproductive purposes, including use at stud or the provision of embryos."¹⁷⁴ The research exemption embodies the contention that using an invention to further scientific inquiry is not patent infringement.¹⁷⁵ The deposit requirement gives a great deal of discretion to the Patent Office, allowing the Commissioner to establish the conditions under which a deposit will be accepted to satisfy the enabling requirement of section 112.¹⁷⁶ However, the bill provides some limit to this discretion by codify-

¹⁶⁸. See Hearings, supra note 23, at 454 (statement of Geoffrey M. Karry, attorney with Dickstein, Shapiro & Morin) ("[P]atents are of particular importance to small start-up companies that are attempting to raise capital. [P]rohibiting patents on transgenic animals could make it extremely difficult for these companies to raise needed capital "); Id. at 27 (statement of Rene D. Tegtmeyer, Assistant Commissioner of Patents) ("[P]atents are of special value to the smaller company, the new entrant, who needs financing, needs support, and really needs to depend upon the exclusivity granted by a patent in order to hold onto a market position and break into a new market.").

¹⁷⁰. See supra notes 146-68 and accompanying text.

¹⁷¹. H.R. 4970, supra note 169, § 2 (proposed amendment to 35 U.S.C. § 271 (1988)) ("It shall not be an act of infringement for a person whose occupation is farming to reproduce through breeding, use, or sell a patented transgenic farm animal "). This bill would limit the exemption to those farmers earning less than $500,000 per year in gross receipts from the farm and those who "conduct farming activities as a single-family enterprise." Id.

¹⁷². Id. § 2 (proposed amendment to 35 U.S.C. § 112 (1988)) ("[I]t shall not be an act of infringement to make or use a patented invention consisting of a genetically altered animal solely for research or experimentation without any commercial intent or purpose.").

¹⁷³. Id. § 3 (proposed amendment to 35 U.S.C. § 112 (1988)) ("[T]he Commissioner may accept a deposit of biological material to satisfy any requirement of this section if made accessible under such conditions as the Commissioner may require.").

¹⁷⁴. Id. § 2 (proposed amendment to 35 U.S.C. § 271 (1988)).

¹⁷⁵. See supra text accompanying notes 142-44.

¹⁷⁶. See H.R. 4970, supra note 169, § 3 (proposed amendment to 35 U.S.C. § 112 (1988)).
ing the Patent Office’s ruling “that human beings are not patenta-
ble subject matter.”

Although this bill avoids the pitfalls created by the moratori-
ums of H.R. 3119, H.R. 3247, and S. 2111, it does not clearly
identify those animals that are patentable. For example, the bill
does not expressly exclude classically bred animals from patent-
bility. It also fails to include them within the farmers’ exemption
which refers to and defines only transgenic farm animals. Therefore,
a farmer may be held liable for patent infringement for
breeding, using, or selling classically bred farm animals. The
research exemption is also ambiguous. The exemption specifically
refers to “a patented invention consisting of a genetically altered
animal,” but fails to define such an animal. For instance, there
is no indication whether a classically bred mouse that is prone to
cancer qualifies as a genetically altered animal covered by the re-
search exemption.

3. H.R. 1556

In many ways, H.R. 1556 parallels H.R. 4970. H.R. 1556
provides a farmer’s exemption, although the farm is not subject to
any size requirement. While H.R. 1556 does not provide a re-
search exemption, the depository requirement and the ban on

177. Id. § 4 (proposed amendment to 35 U.S.C. § 101 (1988)).
178. See supra text accompanying notes 156-68.
179. H.R. 4970, supra note 169, § 2 (“a ‘transgenic farm animal’ is a farm animal
whose germ cells contain genetic material originally derived from another animal other
than the parent of the farm animal”). For further discussion of transgenic animals, see
supra note 40 and accompanying text.
180. One witness before the House Courts, Civil Liberties, and Administration of
Justice Subcommittee emphasized the need for patent legislation to provide explicitly for
classically bred animals in order to be effective:

The bacteria which was at issue in the Chakrabarty decision was not genet-
ically engineered. The oyster which was at issue before the Patent Office
was also not genetically engineered. The allowance of patent protection for
animals will apply to conventionally bred as well as genetically engineered
animals. And Charlie Van Horn the director of the Biotech Group at the
Patent Office stated that the animals must be created through the hand of man,
but that hand does not necessarily have to hold a test tube.

Hearings, supra note 23, at 353 (statement of Nicholas Seay, patent attorney).
181. H.R. 4970, supra note 169, § 2 (proposed amendment to 35 U.S.C. § 271
(1988)).
183. See id. § 2 (proposed amendment to 35 U.S.C. § 271 (1988)).
184. Id. § 3 (proposing an amendment to 35 U.S.C. § 112 (1988)).
patenting human beings are identical to those in H.R. 4970.186

If enacted, H.R. 1556 would cause considerable difficulties for farmers and researchers alike. Like H.R. 4970, H.R. 1556 does not expressly include or exclude classically bred animals from the patent laws. Under this bill, therefore, farmers with farms of all sizes are subject to patent infringement liability if some classically bred animals are ultimately found to be patentable. Furthermore, researchers using either transgenic or classically bred animals in their experiments must consider their potential liability in the absence of a research exemption.

4. The Virginia Proposal

A note published in the *Virginia Law Review* offers a proposal for legislation dealing with the patentability of multicellular organisms (the "Virginia Proposal"). The Virginia Proposal allows the patenting of "any distinct variety of multicellular animal, other than one found in nature, whose distinct characteristic(s) can be reproduced and are stable in the animal’s offspring.”188 If the variety of animal is "novel,” then it satisfies the nonobviousness requirement of section 103 of the patent laws by definition.189 The Virginia Proposal provides only narrow protection of a new multicellular organism, thus encouraging the original developer to pursue “all the possible fruits of his research”190 If the original developer’s claim is not exhaustive, then "others have the opportunity to develop new inventions based on the previous work."191 The Virginia Proposal further requires a patent applicant to deposit samples of genetic material in order to satisfy the section 112 enabling requirement.192 The Virginia Proposal also places the initial burden of proving patent infringement on the patent owner.193 If the patent owner successfully proves in-

185. *Id.* § 4 (proposing an amendment to 35 U.S.C. § 101 (1988)).
186. *See supra* text accompanying notes 176-77.
188. *Id.* at 1355 (§ 1 of the Virginia Proposal).
189. *Id.* (§ 2 of the Virginia Proposal).
190. *Id.* at 1358-59 (discussing § 3 of the Virginia Proposal) (It is recognized that “minor modifications in the genetic structure of an organism can significantly alter the properties of the organism.”).
191. *Id.* at 1359.
192. *Id.* at 1356 (§ 4 of the Virginia Proposal). No application for a multicellular animal patent will be denied for lack of completeness under 35 U.S.C. § 112 if it is “as complete as is reasonably possible.” *Id.*
193. *Id.* (§ 5 of the Virginia Proposal).
fringement, the alleged infringer bears the burden of proving that the patent does not cover his or her animal.194 Finally, the Patent Commissioner may choose to declare a patented animal open to use if it is deemed "necessary for the health, safety, or welfare of the general public in this country,"196 so long as the owner of the patent is reimbursed "in an amount not less than a reasonable royalty."196

While the Virginia Proposal is clearer than the other proposed legislation, it nevertheless fails in some important respects. The Virginia Proposal does not address the issues of transgenic animals used on family farms and in research. Nor does it adequately limit the types of animals which are patentable. By the Virginia Proposal's definition, classically bred, multicellular animals not found in nature are patentable because their characteristics are reproducible and stable in their offspring. However, classically bred animals would be almost impossible to adequately describe for the purposes of the section 112 enabling requirement197 because their exterior characteristics do not always breed through to offspring.198 Although section 4 of the Virginia Proposal specifies that such descriptions satisfy the enabling requirement,199 they may defeat the purpose of section 3 to give other inventors the opportunity to develop new innovations by improving patented inventions or incorporating them into other technologies.200 Furthermore, vague descriptions of classically bred animals would hardly enable one skilled in the art to recreate inventions.201

IV A Proposal to Change the Patent Law

The proposals discussed in Section III of this note do not adequately address the unique problems created by the patenting of multicellular organisms. Congress should therefore try once again to craft legislation clarifying this area of patent law Section IV of

194 Id.
195 Id. (§ 6 of the Virginia Proposal).
196 Id.
198 See Note, supra note 29, at 316 ("[l]iving inventions pose a special problem because they cannot be adequately described through illustrative diagrams and written text."); supra text accompanying notes 37-39.
199 See Note, supra note 20, at 1356 (§ 4 of the Virginia Proposal).
200 Id. at 1359 (discussing § 3 of the Virginia Proposal).
this note first discusses what should and should not be included and then offers a foundation upon which Congress can build effective legislation. Any amendments to the patent law must include a clear definition of patentable subject matter, a specific deposit provision, a farmer's exemption, and a research exemption.

A. Definition of Patentability

Congress should model the definition of patentable, multicellular organisms after the definition provided in the Plant Variety Protection Act. That Act defines patentable plants as “novel varieties” which are distinct, uniform, and stable.

In order to be distinct, the novel variety must differ from other known varieties “by one or more identifiable morphological, physiological or other characteristics.” Uniformity requires that “any variations [of the invention] are describable, predictable and commercially acceptable.” Finally, a novel variety is stable if it can be “sexually reproduced or reconstituted” and its distinctive characteristics will, in general, not change. A similar definition of multicellular organisms would expressly provide that human-altered animals of natural origin are patentable subject matter and require that they satisfy the section 102 novelty requirement.

Classic breeding techniques will continue to be the predominant method of developing new multicellular organisms, particularly in the animal husbandry discipline. Thus, Congress should state unambiguously whether these animals are patentable. The legislation proposed by this note identifies classically bred animals as unpatriable subject matter. The problem with patenting classically bred animals is fundamentally one of enablement. While breeders may be able to produce animals with the desired characteristics, even the best breeders have trouble consistently doing so when they rely solely on exterior traits. Classically bred animals, therefore, do not satisfy the uniformity and stability

203. Id. § 2401(a).
204. Id. § 2401(a)(1).
205. Id. § 2401(a)(2).
206. Id. § 2401(a)(3).
208. See Clark, supra note 110, at 443.
209. See infra text accompanying note 236.
210. For a discussion of the problems of classical breeding, see supra text accompanying note 39.
requirements of the proposed definition.211 Furthermore, unlike transgenically created animals,212 classically bred animals cannot be described in a manner sufficient to allow “one skilled in the art”213 to recreate the inventions reliably. Even requiring deposits of the organisms in lieu of written descriptions does not solve this problem. Mandatory deposits would create almost insurmountable problems for depositories in terms of caring, housing, and maintaining the deposits.214 Therefore, classically bred animals are not proper candidates for protection under the United States patent system and should be excluded from it.

B. Deposit Proposal

The Rules for Deposit of Biological Materials for Patent Purposes,215 which were recently adopted by the Patent Office, are generally well-crafted and should be retained in any future animal patent legislation enacted by Congress. However, one addition should be made.

The current deposit rules give no clear guidance as to whether a deposit is required for a particular application.216 Furthermore, section 112 of the patent laws217 does not illuminate the necessity of a deposit. However, “[i]t would be extremely difficult to obtain a written description of multi-cellular organisms or whole animals” that would independently satisfy the enabling requirement of the patent laws.218

The better approach, and the one that Congress should adopt, is to require every inventor to deposit a sample of biological material when applying for a patent of an animate invention. Although a rule requiring deposits would make animal patents unique,219

\begin{flushright}
211 See infra text accompanying notes 234-35. \\
212 For a discussion of transgenic animals, see supra text accompanying notes 40-49. \\
214 For a discussion of the problems faced by depositories maintaining classically bred animals, see supra text accompanying notes 114-18. \\
215 54 Fed. Reg. 34,864 (1989) (to be codified at 37 C.F.R. pt. 1). For a complete discussion of these rules, see supra text accompanying notes 119-35. \\
216 54 Fed. Reg. 34,864, 34,874 (1989) (§ 1.801 of the rules is “not designed to decide such substantive issues such as whether a deposit of a particular organism would [need] to be made ”). \\
218 Pautler, Patenting of Life Forms: Where Do We Go From Here?, TRIAL, April 1982, at 47, 49. \\
\end{flushright}
this is an appropriate reflection of the radical differences between animals and other, more typical, patented inventions. Even under current law, transgenically created animals usually require some sort of deposit.220 It is, therefore, more efficient to structure the animal patenting process to accommodate these cases routinely. Furthermore, the proposed deposit rule would probably encourage the development of more depositories, which will be needed as more researchers seek to patent their novel varieties of multicellular organisms.

C. Farmer's Exemption

Congress should include a farmer’s exemption similar to that proposed in H.R. 4970221 in any future animal patent legislation. A well-crafted farmer’s exemption has several benefits. First, it clearly identifies which activities constitute patent infringement by farmers.222 Second, it reduces the record keeping burden of farmers who would otherwise have to track the use of patented animals and payment of respective royalties.223 Finally, a farmer’s exemption prevents patent owners from threatening patent infringement actions in order to coerce favorable licensing agreements.224

A farmer’s exemption provision should clearly define the scope of its coverage and simultaneously limit exempted parties to the smallest number consistent with achieving the desired ends. The farmer’s exemption should therefore allow a farmer to purchase a patented animal and use it, sell it, or even breed it so long as the resulting animals are not sold to be bred.225 The exemption proposed by this note reflects a compromise position, balancing the traditional practice of a farmer buying an animal that may be used to produce marketable offspring against the desire to protect the inventor’s right to profit from his or her investment

\begin{footnotesize}
\begin{itemize}
 \item 220 See, e.g., Transgenic Non-human Mammal, Patent and Trademark Office, U.S. Patent No. 4,736,866 (1988) ("Plasmids bearing the fusion genes have been deposited in the American Type Culture Collection ").
 \item 221 H.R. 4970, \textit{supra} note 169. For a complete discussion of H.R. 4970, see \textit{supra} text accompanying notes 170-81.
 \item 222 See \textit{Merges}, \textit{supra} note 29, at 1072.
 \item 223 \textit{Id}.
 \item 224 \textit{Id}.
 \item 225 See H.R. 4970, \textit{supra} note 169, § 2.
\end{itemize}
\end{footnotesize}
and to encourage further innovations. In other words, the farmer retains the traditional right to breed and use the animal, while the inventor remains protected. Furthermore, when a patented animal is mated with a non-patented animal, a maximum of only sixty percent of the offspring will possess the patented trait.226 Thus, even with an exemption, a farmer will eventually need to purchase more patented animals to continue receiving the benefit of the desired trait.227

D Research Exemption

It is especially important that researchers understand what constitutes noninfringing use of patented animals since a "large amount of research that is [performed on animals] by public agencies is in the agricultural sector."228 Thus, Congress should include a research exemption similar to that contained in H.R. 4970229 in its changes to the patent law. This exemption would encourage the use of patented animals to promote scientific research and discoveries.230

E. The Proposed Multicellular Organism Patent Act

Any legislation affecting the patentability of animals must first define which animals are patentable. The legislation must also specify when an inventor needs to make a deposit and include farmer's and researcher's exemptions. In addition, Congress should establish the Biotechnology Science Coordinating Committee proposed in H.R. 1557231 This committee would be more effective than the patent laws in resolving the very real ethical and policy questions that still plague the biotechnology industry.232

226 Merges, supra note 29, at 1071.
227 Id.
228 Id. at 1073.
229 See H.R. 4970, supra note 169, at 1-2; supra text accompanying note 175.
230 See Merges, supra note 29, at 1073.
231 See H.R. 1557, supra note 105, § 1. This committee would be under the control and supervision of the Director of the Office of Science and Technology Policy. Any action taken by the Committee in performing its functions would be considered "an action taken by [the Office of Science and Technology Policy] in the performance of its duties under title IV of the National Science and Technology Policy, Organization, and Priorities Act of 1976." Id.
232 For a discussion of the appropriateness of ethical and moral issues in the patenting process, see supra text accompanying notes 93-105.
Multicellular Organism Patent Act

§ 1 Definition of Patenable Animals

Any novel variety of multicellular organism may be patented, except as provided in subsections (b) and (c):

(a) A "novel variety" is one that is: (1) clearly different from other known varieties in one or more identifiable morphological or physiological characteristic(s);\(^\text{233}\)

(2) uniform in that it is describable and predictable;\(^\text{234}\) and

(3) stable in that it can be sexually reproduced or reconstituted and the distinctive characteristic will be passed on unchanged to at least some of its offspring.\(^\text{235}\)

(b) Animals created through classic breeding methods are not patentable subject matter.\(^\text{236}\)

(c) Human beings are not patentable subject matter.\(^\text{237}\)

§ 2 Deposit Requirement

A sample of the multicellular organism's biological material must be deposited in a depository approved by the Patent and Trademark Office.\(^\text{238}\)

(a) It will be the province of the patent examiner to determine if the deposit is acceptable for patent purposes.

(b) The deposit must be maintained for a minimum of thirty years and at least five years after the most recent request received by the depository for a sample of the deposit.\(^\text{239}\)

(c) If the deposit is damaged or lost during its term in the

\(^{233}\) This definition is derived from the Plant Variety Protection Act. 7 U.S.C. § 2401(a)(1) (1988). For a discussion of the Plant Variety Protection Act as model legislation, see supra text accompanying notes 202-07.

\(^{235}\) See id. § 2401(a)(3).

\(^{236}\) For a discussion of excluding classically bred animals from patent protection, see supra text accompanying notes 208-14.

\(^{237}\) This exception is derived from H.R. 4970, supra note 161, § 4; see supra text accompanying note 177.

\(^{238}\) The proposed deposit requirements are nearly identical to the Patent Office's Rules for Deposit of Biological Materials for Patent Purposes. See 54 Fed. Reg. 34,864 (1989) (to be codified at 37 C.F.R. pt. 1); supra text accompanying notes 119-35. However, the Patent Office rules do not require a deposit "unless access to such material is necessary for the satisfaction of 35 U.S.C. 112." 54 Fed. Reg. 34,880, 34,880 (1989) (to be codified at 37 C.F.R. § 1.802). For a discussion of the reasons favoring a deposit requirement in all cases, see supra text accompanying notes 219-20.

depository, a supplemental deposit must be made.
(d) The deposit must, at all times during the term of the de-
posit, be capable of either direct or indirect self-replication.

§ 3 Farmer’s Exemption

A person whose occupation is farming and whose farm is a
single family enterprise may use, sell, or reproduce a patented
farm animal through breeding without infringing the patent, sub-
ject to the conditions in subsection (c).
(a) A “farm” is a single family enterprise if all the manage-
ment and a substantial portion of the labor are provided by
the members of one family
(b) A “farm animal” is any animal used or intended for use
as food or fiber.
(c) The breeding or sale of the animal must not be for repro-
ductive purposes such as providing stud services or embryos.

§ 4 Research Exemption

The use of a patented animal solely for research or experi-
mentation, without any commercial intent or purpose, will not be
an infringement of the patent.

V Conclusion

While inventors may never be able to perfect the mousetrap,
they may be able to perfect the mouse. Clearly, the patent stat-
utes are currently inadequate to solve the problems raised by such
inventions. Although several proposals have been made to address

240. See id. at 34,881 (to be codified at 37 C.F.R. § 1.805).
241. See id. at 34,882 (to be codified at 37 C.F.R. § 1.807). Requiring a deposit that
can reproduce the patented organism ensures that the enabling requirement of section 112
is satisfied and eliminates the problem of deciding when the breeding and genetic material
are common enough to obviate the deposit requirement. See supra text accompanying note
120. Thus, under this proposed legislation, the most likely deposit would be a frozen em-
bro. However, as cloning techniques are improved, deposits of cells from the multicellular
organism would also satisfy the requirement.
242. The farmer's exemption is derived from H.R. 4970, supra note 169, § 2; see
text accompanying note 174.
243. See H.R. 4970, supra note 169, § 2.
244. Id.
245. Id.
246. The research exemption is derived from H.R. 4970, supra note 169, § 2; see
supra text accompanying note 175.
these problems, they are inadequate for the task. Congress has the ability to solve the problems surrounding the patentability of multicellular organisms. Well-crafted legislation would clarify the law regarding the patenting of animals. New legislation must clearly define those animals which are patentable and expressly exclude classically bred animals from patentability. The Patent Office's depository rules should be amended to require deposits for all multicellular organism patent applications. Finally, the legislation should include a limited farmer's exemption and a research exemption in order to encourage work in these areas and clarify the boundaries of patent rights. By incorporating these proposals, Congress can indeed build the better mousetrap of improved patent law.

Marsha L. Montgomery*

* The author would like to thank Professor Rebecca Dresser for her suggestions and help throughout the development of this note. Thanks also to my husband, Jon A. Shupe, Ph.D., for serving as a testing ground for ideas. Finally, thanks to M.L. and Jean Montgomery; without their unfeiling support, the writing of this note would have been much more painful.