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One of the central problems bottlenecking machine learning research is classical 

computational power limits. Quantum computing provides a solution, offering 

more processing power for less electric cost. Quantum Machine Learning (QML) 

is a research field at the intersection of quantum computing and machine learning 

technologies, driving the cutting edge in technological innovation. While the legal 

literature on software patents is rapidly scaling, the research focused on QML 

patents is noticeably nascent. As such, this Article contributes the first empirical 

patent survey for QML technologies 
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I. INTRODUCTION 

 

 Machine learning technology is affecting industries across the economy 

including law, transportation, and defense. 1  In the legal industry, technology 

assisted review is changing the discovery process.2 In corporate litigation, millions 

of documents often require searching and examination for relevance.3 As such, 

clients call on litigators to establish e-discovery relevancy hypotheses and to 

implement predictive coding models for discovering electronic information.4 In 

other words, algorithms learn what documents are relevant by analyzing and 

replicating the decisions of real attorneys.5 

 

 The driving force for machine learning technology is “the realization that 

every piece of information can be represented as numbers.”6 One problem with 

classical machine learning systems is that data processing is computationally 

expensive. 7  In other words, processing the world’s information with machine 

learning algorithms takes a tremendous amount of computational power.8 Quantum 

 
1 Emily Berman, A Government of Laws and Not of Machines, 98 B.U. L. REV. 1277, 1278-

1279 (2018), http://www.bu.edu/bulawreview/files/2018/10/BERMAN.pdf (defining 

“machine learning” as “a strand of artificial intelligence that sits at the intersection of 

computer science, statistics, and mathematics, and it is changing the world.”); see also Jeanne 

C. Fromer, Machines as the New Oompa- Loompas: Trade Secrecy, the Cloud, Machine 

Learning, and Automation, N.Y.U. L. REV, 706, 720 

(2019), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3359746 (“In recent years, 

[machine learning] techniques have been among the most successful and prominent ways of 

imbuing computers with artificial intelligence, or human-like cognitive abilities.”). 
2 See Sara Metzler, Moving Discovery Forward in the Technology Age, GEO. J. 

LEGAL ETHICS 1153 (2016).  
3 As a result, many law firms submit to costly contracts for document review systems, 

allowing AI to improve the efficiency with which documents are reviewed. See Michael 

Simon, et. al., Lola v. Skadden and the Automation of the Legal Profession, 20 YALE J.L. & 

TECH. 234, 254 (2018); see also Chris D. Birkel, The Growth and Importance of Outsourced 

E-Discovery: Implications for Big Law and Legal Education, 38 J. LEGAL PROF. 231 (2014).   
4 KEVIN D. ASHLEY, ARTIFICIAL INTELLIGENCE AND LEGAL ANALYTICS 240-42 (2017).  
5 See id.  
6 ETHEM ALPAYDIN, MACHINE LEARNING 2 (2016); see also JAMES W. CORTADA, INFORMATION 

AND THE MODERN CORPORATION 2 (2011) (illustrating that “[d]ata come in many forms . . . Data 

are facts, such as names and numbers.”); see also PAUL E. CERUZZI, COMPUTING: A CONCISE 

HISTORY 103 (2012). 
7 See Brian S. Haney, The Perils and Promises of Artificial General Intelligence, 45 J. LEGIS. 151, 

162 (2018). 
8 See Ekaterina Gonina, A Framework for Productive, Efficient and Portable Parallel Computing 1 

(Fall 2013) (unpublished Ph.D dissertation, University of California, Berkeley), 

https://escholarship.org/uc/item/7hs0x0mp (explaining that the need for increased processing 

power is disrupting the software industry); see also MAXIM LAPAN, DEEP REINFORCEMENT 

LEARNING HANDS-ON 125 (2018). 
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computing offers a solution to this problem. Quantum machine learning software 

makes use of quantum algorithms as part of a larger implementation.9 

 

 This Article proceeds in four parts. Part II provides background on quantum 

hardware technologies and the developments making QML possible. Part III 

explains the formal frameworks for QML, drawing on patents and research to 

define and review the state-of-the-art. Part IV surveys the patent landscape for 

QML, modeling datasets, analyzing legal claims, and exploring valuation models. 

Finally, Part V discusses future considerations for QML technologies and patents. 

 

II. QUANTUM HARDWARE 

 

 A quantum computer is a physical system harnessing quantum effects for 

computation.10 Quantum computers differ from classical computers in the way they 

process information.11 Classical computers process information with bits—a binary 

representation. 12  Quantum computers process information with qubits—

representing information in a complex vector space.13  

 

 
9 Mohammad H. Amin, et. al., Quantum Boltzmann Machine, 8 PHYSICAL REV. X 021050-1 

(2016) (proposing a quantum probabilistic model for machine learning based on a Boltzmann 

distribution of a quantum Hamiltonian, a Quantum Boltzmann Machine).  
10 Aleksey K. Fedorov, et. al., Comment, Quantum Computers Put Blockchain Security at Risk, 

563 NATURE INT’L J. SCI. 465, 466 (2018); see also U.S. Patent No. 9,779,360 col. 1 l. 11-21 (filed 

June 30, 2016); U.S. Patent No. 9,432,024 col. 1 l. 16-44 (filed Sept. 30, 2014).  
11 A. M. Turing, On Computable Numbers, with an Application to 

the Entscheidungsproblem, 42 PROC. LONDON MATHEMATICAL SOC.’Y 230, 230 (1936) 

(explaining how classical computers process information); see also U.S. Patent No. 10,474,960 

col. 1 l. 9-15 (filed Oct. 25, 2018).  
12 CERUZZI, supra note 6. 
13 See CHRIS BERNHARDT, QUANTUM COMPUTING FOR EVERYONE 38 (2019); see also 

Eleanor Rieffel & Wolfgang Polak, An Introduction to Quantum Computing for Non-Physicists, 

32 ACM COMPUTING SURVEYS 306 (2000) (defining qubit as “a unit vector in a two- dimensional 

complex vector space for which a particular basis, denoted by {∣∣0⟩, ∣∣1⟩}, has been fixed.”). 
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Figure 114 

 

 To illustrate, Figure 1 is a patent drawing for a qubit. The qubit is an 

innovation improving the efficiency and power of classical computing 

methodologies with quantum mechanics.15 A qubit may represent a zero, one, or 

zero and one simultaneously in a state of superposition.16 This representation is a 

complex vector space, rather than Boolean binary, which allows for faster 

computing and less electrical power consumption compared to its classical 

counterpart.17 The mathematical abstraction is intended to mirror the difference 

between classical and quantum states in physics. 18   Commonly, there are two 

different types of quantum computers,19 adiabatic quantum computers and gate 

model quantum computers.20 

 
14 U.S. Patent No. 9,126,829 fig.5 (filed Jan. 13, 2012).  
15 See U.S. Patent No. 9,400,499 col. 1 l. 35-38; 45-56 (filed Oct. 2, 2015). 
16 Peter M. Kogge & Jonathan Baker, University of Notre Dame, Quantum Computing 

Introduction (Fall 2017) (presentation available at https://www3.nd.edu/~kogge/courses/cse30151- 

fa17/Public/Lectures/QC-JMB-edits.pdf). Superposition refers to electrons simultaneously 

existing in several different quantum states. Quantum Superposition, JOINT QUANTUM INST. (last 

visited Nov. 4, 2020), https://jqi.umd.edu/glossary/quantum-superposition.  
17 Brian S. Haney, Blockchain: Post-Quantum Security & Legal Economics, 24 N.C. BANKING 

INST. 117, 130-131 (2020) [hereinafter “Blockchain”].  
18 LEONARD SUSSKIND & ART FRIEDMAN, QUANTUM MECHANICS: THE THEORETICAL MINIMUM 2 

(2014); see also U.S. Patent No. 10,417,574 (filed Nov. 4, 2014).  
19 Recent research indicates a third variant is developing, ion trap quantum computers. See U.S 

Patent No. 9,858,531 (filed Aug. 1, 2014); U.S Patent No. 7,411,187 (filed May 23, 2006).  
20 Ehsan Zahedinejad & Arman Zaribafiyan, Combinatorial Optimization on Gate Model Quantum 

Computers: A Survey 1 (Aug. 16, 2017) (unpublished manuscript), 

https://arxiv.org/abs/1708.05294.  
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 Adiabatic quantum computers (“AQCs”) are supercomputers harnessing 

quantum state evolution to perform computation.21  For computation, AQCs use the 

Adiabatic Theorem,22 which contains two elements, the Ising Model and a traverse 

magnetic field. 23  The Ising Model is used in statistical mechanics, where the 

relationships between binary variables are represented by couplings.24 Further, the 

Ising Model uses a Hamiltonian 25  energy measurement function to explain a 

quantum system’s total energy.26 The input for the Hamiltonian function is the 

system’s state.27 The output is the system’s energy measurement.28 In other words, 

the Hamiltonian returns the energy measurement for the particular state.29  

 
21 U.S. Patent No. 7,135,701 col. 1 l. 33-55 (filed Mar. 28, 2005); See also U.S. Patent No. 

6,649,929 (filed May 16, 2002).  
22  See U.S. Patent No. 7,418,283 (filed Mar. 28, 2005).  
23 See Augusto Cesar Lobo, et al., Geometry of the Adiabatic Theorem (June 8, 2012) 

(unpublished manuscript), https://arxiv.org/pdf/1112.4442.pdf.  
24 U.S. Patent No. 10,339,466 (filed Sept. 11, 2014); see generally Tameem Albash & Daniel A. 

Lidar, Adiabatic Quantum Computing (Feb. 2, 2018) (unpublished 

manuscript), https://arxiv.org/abs/1611.04471 (presenting an account of many of the developments 

in the adiabatic quantum computing field).  
25 See U.S. Patent No. 10,037,493 col 1. l. 12-16; 46-50 (filed Oct. 21, 2014). In quantum 

mechanics, the Hamiltonian controls a systems evolution through the time-dependent 

Schrödinger equation, seen below.  SUSSKIND & FRIEDMAN, supra note 19, at 273.  

 

𝑖ℏ
𝜕|Ψ⟩

𝜕𝑡
= Η|Ψ⟩. 

 
26 SUSSKIND & FRIEDMAN, supra note 18, at 274.  
27 ‘701 Patent. 
28 The Ising Model is defined: 

 

𝐻𝑠(𝑠) = −
1

2
∑ Δ(𝑠)𝜎𝑖

𝑥
𝑖 + 𝜀(𝑠)(− ∑ ℎ𝑖𝜎𝑖

𝑧 +𝑖 ∑ 𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧
𝑖<𝑗 ). 

 

Here, 𝐻𝑠(𝑠) is the system’s energy measurement. The Initial Hamiltonian is defined, 

 

−
1

2
∑ Δ(𝑠)𝜎𝑖

𝑥
𝑖 , 

 

which is the lowest energy state where all qubits are in a superposition of all states. And, the Final 

Hamiltonian is defined: 

 

𝜀(𝑠)(− ∑ ℎ𝑖𝜎𝑖
𝑧 +𝑖 ∑ 𝐽𝑖𝑗𝜎𝑖

𝑧𝜎𝑗
𝑧

𝑖<𝑗 ), 

 

which is the lowest energy state for the system. In essence, the Hamiltonian is the sum of the 

Initial Hamiltonian and the Final Hamiltonian. See U.S. Patent No. 10,452,990 (filed Nov. 28, 

2017). 
29 See Amin, supra note 9, at 2.  
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 In addition to the Ising Model, AQCs second essential element is a traverse 

magnetic field, which can be manipulated to solve optimization problems.30 During 

computation, each qubit begins in a flux superposition encoded in a circular 

magnetic field.31 Then a magnetic field is applied to the qubits and the qubits move 

toward a binary state.32 AQCs harness natural quantum state evolution to solve 

optimization and sampling problems.33 More specifically, AQCs measure quantum 

state evolution with a Hamiltonian function, manipulating a magnetic field to 

perform computation. 34  However, one potential drawback is that AQCs are 

arguably incapable of scaling to a universal quantum computer.35 

 

 The second type of quantum computer is the Gate Model Quantum 

Computer (“GMQC”). 36  In contrast to AQCs, which utilize a quantum state’s 

natural evolution, GMQCs manipulate quantum state evolution.37 The GMQC has 

two conceptual elements, the quantum circuit and gate transformation. In other 

words, GMQCs uses a circuit, replacing classical gates with quantum equivalents.38 

However, a quantum circuit can process information in a manner significantly 

different from binary digital techniques based on transistors.39  In the circuit-based 

model, qubits remain coherent over time periods much longer than the single-gate 

time.40 For GMQCs, the main goal is to control and manipulate quantum state 

evolution over time with gate transformations.41 

 

 
30 See U.S. Patent No. 7,877, 333 (filed Sept. 5, 2007).  
31 See U.S. Patent No. 7,788,192 (filed Jan. 22, 2007).  
32 See ‘701 Patent. 
33 See ‘333 Patent. 
34 See ‘493 Patent. 
35 “AQC is universal in that it is able to convert any input state into any output state. However, 

unlike the circuit model of quantum computing, there is no application of a predetermined set of 

one- and two-qubit unitary gates at precise times.” ‘283 Patent col. 7 l. 51-56; see also Joel M. 

Gottlieb, North Carolina State University, Introduction to the Physics of D-Wave and Comparison 

to Gate Model (March 20, 2018).  
36 See ‘024 Patent. 
37 See U.S. Patent No. 10,439,735 (filed Mar. 7, 2017).  
38“Analogous to how classical algorithms can be built from a universal logic gate, such as a 

NAND gate, all quantum algorithms can be constructed from a universal set of quantum gates.” 

‘024 Patent, col. 1 l. 21-24.  
39 ‘960 Patent; see generally Mihika Prabhu, Towards Optimal Capacity-Achieving Transceivers 

with Photonic Integrated Circuits (Jan.31, 2018), https://dspace.mit.edu/handle/1721.1/115725.   
40 U.S Patent No. 8,504,497 (filed Jul. 28, 2010) (issued August 6, 2013).   
41 See Artur Eckert, et al., Basic Concepts in Quantum Computation 4 (Feb. 1, 2008) (unpublished 

manuscript), https://arxiv.org/abs/quant-ph/0011013v1 (discussing qubit control toward a target 

state).  
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 A quantum gate is a state transformation acting on qubits.42 Some sequences 

of quantum gates are called quantum gate arrays. 43  In quantum information 

processing, gates are mathematical abstractions useful for describing quantum 

algorithms.44 For example, the controlled-NOT (𝐶𝑛𝑜𝑡) gate45 operates on two qubits 

by changing the second bit if the first bit is one, leaving the bit unchanged 

otherwise.46 The GMQC’s main advantage is the potential to scale to a universal 

quantum computer—a computer that can simulate any other quantum computer.47 

But, GMQCs are slower to scale than AQCs, meaning practically GMQCs have 

less qubits.48 

 

III. QUANTUM MACHINE LEARNING 

 

 Quantum Machine Learning (“QML”) refers to a specific type of quantum 

software application that integrates quantum hardware architectures with classical 

and quantum algorithms for machine learning.49 Machine learning is a process 

where computational matter rearranges itself according to logical rules to achieve 

goals.50 According to Maria Schuld, “[t]he new research field of quantum machine 

 
42 See ELEANOR RIEFFEL & WOLFGANG POLAK, QUANTUM COMPUTING 74 (2014); see also Eckert, 

supra note 41 at 4 (“A quantum logic gate is a device which performs a fixed unitary operation on 

selected qubits in a fixed period of time and a quantum network is a device consisting of quantum 

logic gates whose computational steps are synchronized in time.”). 
43 See U.S. Patent No. 9,892,365 (filed Feb. 27, 2015) (issued Feb. 13, 2018); see also U.S. Patent 

No. 10,268,232 (filed June 2, 2017) (issued Apr. 23, 2019) (discussing quantum gate array 

applications for developing neural networks). 
44RIEFFEL & POLAK, supra note 42, at 74.   
45‘735 Patent (“In computing science, the controlled NOT gate (also C-NOT or CNOT) is a 

quantum gate that is an essential component in the construction of a quantum computer.”).  
46 See RIEFFEL & POLAK, supra note 42, at 77.(2014). The 𝐶𝑛𝑜𝑡 gate’s importance in quantum 

computing stems from its ability to change the entanglement between two qubits. The 𝐶𝑛𝑜𝑡 gate is 

defined: 

 

𝐶𝑛𝑜𝑡 = |0⟩〈0|⨂𝐼 + |1〉⟨1|⨂𝑋. 
 

Here, 𝐼 is an identity transformation, and 𝑋 is negation, and ⨂ is the tensor product. Interestingly, 

𝐶𝑛𝑜𝑡 is unitary and is its own inverse. 
47  ‘192 Patent.  
48 Ehsan Zahedinejad & Arman Zaribafiyan, Combinatorial Optimization on Gate Model Quantum 

Computers: A Survey 3 (Aug. 16, 2017) (unpublished manuscript), 

https://arxiv.org/abs/1708.05294 (“Over the past decade, there has been a great deal of progress in 

designing adiabatic quantum devices, with the D-Wave 2000Q quantum computing machine, with 

more than two thousand qubits, being the latest quantum adiabatic optimizer.”).  
49 Emily Berman, A Government of Laws and Not of Machines, 98 B.U. L. REV. 6 (2018).  
50Id. at 1277-78 (explaining that machine learning is a strand of artificial intelligence that sits at 

the intersection of computer science, statistics, and mathematics, and it is changing the world).   
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learning might offer the potential to revolutionize future ways of intelligent data 

processing.”51 Part III analyzes three QML system types: (1) predictive graphs; (2) 

intelligent agents; and (3) quantum convergent. 

 

A.  PREDICTIVE GRAPHING 

 

 The first type of quantum machine learning system is predictive graphing. 

The central goal for predictive graph models is pattern recognition in which a 

machine draws inferences from a set of training data, subsequently mapping new 

inputs to corresponding outputs. 52  Many quantum graphing models use linear 

algebra, scaling Boolean logic for abstract reasoning.53 Predictive graphing models 

include Quantum Neural Networks (“QNNs”) and Quantum Boltzmann Machines 

(“QBMs”). 

 

 1. QUANTUM NEURAL NETWORKS 

 

 A QNN is an organized structure of interconnected neurons, capable of 

association as a graph with nodes and edges. 54  The network’s interconnected 

neurons are modeled with weight coefficients that are adjusted through a learning 

process until a model is optimized for performance. 55  Importantly, QNNs are 

universal function approximators: they can approximate any function with desired 

accuracy given enough neurons.56 Since all that information can be represented as 

 
51 Maria Schuld, et al., An introduction to quantum machine learning 2 (2014) (unpublished 

manuscript), https://arxiv.org/pdf/1409.3097.pdf.  
52 Maria Schuld, et al., Prediction by linear regression on a quantum computer 1 (2016) 

(unpublished manuscript), https://arxiv.org/abs/1601.07823v2; see also Maria Schuld, et al., 

Measuring the similarity of graphs with a Gaussian Boson Sampler 9 (2019), 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.032314. (“We proposed a new type of 

feature extraction strategy for graph-structured data based on the quantum technique of Gaussian 

Boson Sampling.”). 
53 Fromer, supra note 1, at 720 (“The critical ingredients of machine learning are relevant data and 

statistical techniques.”). 
54 Maria Schuld, et al., The quest for a Quantum Neural Network 1 (2014) (unpublished 

manuscript), https://arxiv.org/abs/1408.7005 (“Quantum Neural Networks (QNNs) are models, 

systems or devices that combine features of quantum theory with the properties of neural 

networks.”) [hereinafter “Quest for a Quantum Neural Network”]. 
55 U.S. Patent No. 10,229,355 (filed Apr. 13, 2016) (issued Mar. 12, 2019).  
56 Brian S. Haney, AI Patents: A Data Driven Approach, 19 CHI.-KENT J. INTELL. 

PROP. (forthcoming 2020), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3527154 

[hereinafter “AI Patents”].  
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numbers, the QNN’s ability to generalize to new information is a critical component 

for deep learning.57 Theoretically, a QNN can process any information.58 

 

 QNNs map differently to different hardware depending on the physical 

substrate. For example, QNNs may be mapped to an AQC with a Chimera Graph 

architecture. 59  But, every QNN has an input layer and an output layer. 60  The 

process by which data flows from the input layer to the output layer is the network’s 

function.61 A QNN contains multiple hidden layers between the input and output 

layer.62 The model’s depth is defined by the number of hidden layers between the 

input and output layer.63   

 

 Each layer of hidden neurons acts as a feature extractor by providing 

analysis of slightly more complicated features.64 Feature extraction is a method of 

dimensionality reduction—decreasing input attributes—allowing the observable 

manifestation of hidden features.65 The later neurons extract hidden features by 

 
57 Christa Zoufal, et al., Quantum Generative Adversarial Networks for learning and loading 

random distributions, 1 (2019), https://www.nature.com/articles/s41534-019-0223-2 (“We 

demonstrated the application of an efficient, approximate probability distribution learning and 

loading scheme based on qGANs that requires 𝒪(𝑝𝑜𝑙𝑦(𝑛)) many gates.”); see also ETHEM 

ALPAYDIN, MACHINE LEARNING 2 (2016). 
58Olga Russakovsky, et al., Best of both worlds: human-machine collaboration for object 

annotation (2015), https://ieeexplore.ieee.org/document/7298824 (introducing a model that 

integrates multiple computer vision models with multiple sources of human input in a Markov 

Decision Process); see also Lise Getoor, et al., Learning Probabilistic Models of Relational 

Structure (2001), https://ai.stanford.edu/~koller/Papers/Getoor+al:ICML01.pdf.   
59 Luca Asproni, et al., Accuracy and minor embedding in subqubo decomposition with fully 

connected large problems: a case study about the number partitioning problem, QUANTUM 

MACHINE INTEL. (2020), https://doi.org/10.1007/s42484-020-00014-w.   
60 U.S. Patent No. 10,268,232 (filed June 2, 2017) (issued Apr. 23, 2019).   
61 Id.  
62 ‘355 Patent. 
63 Mihika Prabhu, et al.,  A Recurrent Ising Machine in a Photonic Integrated Circuit (2019) 

(unpublished manuscript), https://arxiv.org/abs/1909.13877 (experimentally demonstrating a 

photonic recurrent Ising sampler for probabilistically finding the ground state of an 

arbitrary Ising problem); see also Serena Yung, et al., Every Moment Counts: Dense Detailed 

Labeling of Actions in Complex Videos (2017) (unpublished 

manuscript), https://arxiv.org/abs/1507.05738 (modeling multiple dense labels benefits from 

temporal relations within and across classes); Brian S. Haney, Applied Natural Language 

Processing for Law Practice, 2020 B.C. INTELL. PROP. & TECH. F. (2020) [hereinafter “Applied 

Natural Language”]. 
64 Quest for a Quantum Neural Network, supra note 54, at 3 (“Computing in artificial neural 

networks is derived from our neuroscientific understanding of how the brain processes 

information in order to master its impressive tasks.”).   
65 Brian S. Haney, Deep Reinforcement Learning Patents: An Empirical Survey  (2020), 

https://papers.ssrn.com/sol3/papers.cfm?abstractid=3570254. 
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combining the previous features of a slightly larger number of neurons.66 Finally, 

the output layer observes the whole input to produce a final prediction.67 In other 

words, QNNs learn more complicated functions of their initial input when each 

hidden layer combines the values of the preceding layer.68 

 

 Consider, U.S. Patent No. 10,417,553, Quantum-assisted training of neural 

networks (‘553 patent), which is assigned to Lockheed Martin.69 The 553’ patent’s 

figure 4 provides a flow model for training neural networks on quantum 

computers.70  

 
Figure 271 

Figure 2 is the ‘553 patent’s figure 4. The model illustrates a process for training 

neural networks using quantum sampling and backpropagation. 

 

 
66 Anya Tafliovich, Quantum Programming, 2 (2004) (unpublished M.Sc. thesis, University of 

Toronto) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.6391&rep=rep1&type=pd

f (“In this work the theory of quantum programming is based on probabilistic predicative 

programming, a recent generalization  of the well-established predicative programming, which we 

deem to be the simplest and the most elegant programming theory known today.”).    
67 U.S. Patent No. 8,595,167 (filed Nov. 30, 2010) (issued Nov. 26, 2013).   
68Schuld, supra note 51 at 2.   
69 U.S. Patent No. 10,417,553 (filed May 1, 2015) (issued Sept. 17, 2019).  
70 Id. 
71 Id. (“FIG.4 shows a flow chart of a quantum-assisted training process for training neural 

networks according to an embodiment of the disclosure. In an embodiment, the neural network to 

be trained is a deep learning neural network. The process starts at S401 and proceeds to S410.”).    
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 Backpropagation is an algorithm for updating the weights in a neural 

network, improving accuracy over time.72 Backpropagation is how neural networks 

learn. 73  Technically, backpropagation’s central task is to minimize an error 

function, which can be computationally expensive on classical hardware.74  After 

consistent iteration, the network converges, capturing a general pattern and 

allowing the network to generalize about new instances, rather than merely 

memorizing training data.75 The algorithm’s ultimate goal is convergence to an 

optimal network, but probabilistic maximization also provides state-of-the-art 

performance in real world tasks.76 Similar to QNN structure, QBMs are also a graph 

based model for prediction. 

 

 2.  QUANTUM BOLTZMANN MACHINES 

 

 A QBM is a network of symmetrically coupled stochastic binary units.77 In 

other words, a QBM is a model representing a probability distribution over a set of 

 
72 U.S. Patent No. 10,540,588 (filed June 29, 2015) (issued Jan. 21, 2020).   
73 Paul John Werbos is considered the first person to explore backpropagation through neural 

networks in his seminal 1974 Ph.D. thesis, The Roots of Backpropagation. One the key 

contributions of Werbos’ work is the idea of backpropagation through time. By applying a 

temporal element to the process, Werbos showed the utility of neural networks in dynamic control 

tasks for robotics systems.  See PAUL JOHN WERBOS, THE ROOTS OF BACKPROPAGATION FROM 

ORDERED DERIVATIVES TO NEURAL NETWORKS AND POLITICAL FORECASTING 279-280 (1994).  
74 An error function is a measure of the difference between the network’s output and the actual 

value associated with the instance. The error function is minimized through an iterative process, 

updating the network’s weights toward a set of weights capable of generalizing to make accurate 

predictions for the whole data set, or text corpus. See United States Patent No. 10,346,974 (filed 

May 18, 2017) (issued July 9, 2019); see also SEBASTIAN RASCHKA, VAHID MIRJALILI, PYTHON 

MACHINE LEARNING 24, 35-36 (2017); United States Patent No. 10,112,113 (filed Mar. 30, 

2016) (issued Oct. 30, 2018).  
75 Fang Liu, Assessment of Bayesian Expected Power via Bayesian Bootstrap 14 (2017) 

(unpublished manuscript), https://arxiv.org/abs/1705.04366 (“The bootstrap-based procedures will 

appeal to non-Bayesian practitioners given their analytical and computational simplicity and 

easiness in implementation.”); see also U.S. Patent No. 10,049,301 (filed Aug. 1, 2016) (issued 

Aug. 14, 2018) (discussing difficulties using policy iteration in practice). 
76 JOHN D. KELLEHER, DEEP LEARNING 215 (2018). 
77 U.S. Patent No. 10,402,743 (filed Oct. 25, 2018) (issued Sept. 3, 2019) (“A Boltzmann 

Machine (BM) can be described as a graph where each node (or unit) is equipped with a parameter 

and each edge is equipped with a (coupling) parameter.”). The QBM contains a set of visible units: 
𝑣 ∈ {0,1}𝐷. 

 

Further, the QBM contains a set of hidden units: 

ℎ ∈ {0,1}𝑃. 
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binary variables.78 QBMs use two types of binary variables – visible variables, v, 

and hidden variables, h.79 Figure 3 presents a QBM model. 

 

Figure 380 

 

 The visible variables correspond to the important variables of a system – for 

example, the inputs and outputs.81 The hidden variables enable the encoding of 

more complex relationships among the visible variables.82 

 

 There are several QBM variations, for example Restricted Boltzmann 

Machines (“RBMs”)83 and Semi-Restricted Boltzmann Machines (“SRBMs”).84 

 
78 Fabian Ruehle, Data Science Applications to String Theory, PHYSICS REPORTS 87 (2020).   
79 Volodymyr Mnih, et. al., Conditional Restricted Boltzmann Machines for Structured Output 

Prediction (2012) (unpublished manuscript), https://arxiv.org/abs/1202.3748 (stating that 

Boltzmann machines are particularly well suited for quantum computing architectures because of 

their heavy reliance on the use of binary variables). 
80 World Patent No. WO 2016/089711 AI fig.3 (filed June 9, 2016). Figure 1 illustrates a deep 

Boltzmann machine, with an input layer, three hidden layers, and a visible layer.  
81 ‘466 Patent. 
82 ‘553 Patent. 
83 One is the Restricted Boltzmann Machine (RBM). An RBM is a two- layer neural network, 

where the hidden units are conditionally independent given the visible states. Further, the RBM 

has no lateral edges with its visible or hidden variables and is modeled as a bigraph graph. 

A bigraph is a set of graph vertices with two distinct sets.  In the RBM, the hidden nodes are not 

connected to one another. The visible nodes are also not connected to one 

another. See Mnih supra note 79.  
84 ‘466 Patent. A second variation is the Semi-Restricted Boltzmann Machine. A Semi-RBM is a 

two-layer neural network, where the hidden variables are in conditional equilibrium with the 

visible variables. However, the visible units may not be in conditional equilibrium with the hidden 

variables. In other words, there are connections between the hidden variables, but not the visible 
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But, both RBMs and SRBMs are shallow networks, with only two layers. 85 

Therefore, the most powerful QBM model variant is the Deep Boltzmann Machine 

(“DMB”). The DBM is QBM integrated with a QNN in which each layer captures 

a different abstraction of information.86 In the DBM, additional hidden nodes are 

added to create a multi-layered network, deriving deeper abstractions for statistical 

inference and meaning.87  As such, deep learning algorithms can be run on quantum 

hardware by re-framing neural network architectures through a Boltzmann 

Formalism. 88  Thus, both QNNs and QBMs provide opportunity for quantum 

speedup as machine learning converges with quantum hardware. 

 

B. INTELLIGENT AGENTS 

 

 In the 1999 film The Matrix, AI agents named Mr. Smith take over the 

world, while humanity is forced to fight these intelligent machines at great 

sacrifice.89 Perhaps coincidentally, the terminology has evolved into the machine 

learning and AI literature twenty years later. Intelligent agents are machines, which 

learn and take actions to achieve goals. Reinforcement learning is a machine 

learning system for creating and controlling intelligent agents.90 The main idea is 

to train an agent to learn to take intelligent actions through a reward system.91 

 

 1. REINFORCEMENT LEARNING 

 

 Reinforcement learning algorithms contain three elements: (1) model: the 

description of the agent-environment relationship;92 (2) reward: the agent’s goal;93 

and (3) policy: the way in which the agent takes actions.94  For reinforcement 

 
variables. In the Semi-RBM, the hidden nodes are connected to one another, but the visible nodes 

are not.  
85 Id.  
86 Ruehle, supra note 78, at 90.  
87 Brian S. Haney, Quantum Patents, 27 B.U. J. SCI. & TECH. L. __ (2020) (forthcoming), 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3554925. 
88For example, QBM’s may be executed on D-Wave’s AQC. See ‘553 Patent. 
89 THE MATRIX (Warner Bros. Pictures 1999).  
90 MYKEL J. KOCHENDERFER, DECISION MAKING UNDER UNCERTAINTY 77 (2015); see also U.S. 

Patent No. 10,346,741 (filed July 9, 2019). 
91 EUGENE CHARNIAK, INTRODUCTION TO DEEP LEARNING 113 (2018). 
92 Katerina Fragkiadaki, Carnegie Mellon School of Computer Science, Deep Q Learning, (Fall 

2018) (presentation available at 

https://www.cs.cmu.edu/~katef/DeepRLFall2018/lecture_DQL_katef2018.pdf).  
93 LAPAN, supra note 8, at 3. 
94 U.S. Patent No. 9,298,172 (issued Mar. 29, 2016); see also Fragkiadaki, supra note 92. 
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learning systems, the environment 95  represents the problem. 96  Formally, 

reinforcement learning is described through an agent-environment interaction, with 

the Markov Decision Process (“MDP”).97 For example, in financial trading, the 

environment is made up of states for moments in time in which a portfolio of stocks 

exists.98 In the quantum context, the environment is a Quantum Observable Markov 

Decision Process (“QOMDP”).99 In other words, the state-space is described with 

a Hamiltonian, rather than a classical state measurement.100 

 

 2. QUANTUM MARKOV MODELS 

 

 The agent is an algorithm solving the environment or problem by taking 

action.101 In an QOMDP, the interaction begins when an agent chooses an action in 

the environment’s initial quantum state. 102  The model continues to the next 

quantum state, where the agent receives a reward and a set of actions from which 

to choose—the agent selects an action, and the environment returns a reward and 

the next quantum state.103 Ultimately, in reinforcement learning, an agent learns to 

take goal-oriented, or intelligent actions.104  

 

 
95 Ramin Ayanzadeh, et al., Reinforcement Quantum Annealing: A Quantum-Assisted Learning 

Automata Approach 8 (2020) (unpublished manuscript), https://arxiv.org/abs/2001.00234 (“In this 

study, we introduced a novel scheme—called reinforcement quantum annealing (RQA)—that 

leverages reinforcement learning (more specifically learning automata) to ENHANCE the quality 

of results, attained by the quantum annealers.”); see also U.S. Patent No. 10,396,919 (issued 

August 27, 2019).  
96 LAPAN supra note 8 at 8; see also U.S. Patent No. 9,298,172 (issued Mar. 29, 2016).  
97 Jeanne C. Fromer, Learning Optimal Discourse Strategies in a Spoken Dialogue System 40 

(1998) (Masters Thesis, Massachusetts Institute of Technology) (available at 

https://dspace.mit.edu/bitstream/handle/1721.1/47703/42306186-

MIT.pdf?sequence=2&isAllowed=y) (“These algorithms can calculate optimal discourse policies 

for Markov decision problems (MDPs), accessible, stochastic environments with a known 

transition model.”). 
98 LAPAN, supra note 8 at 20-21.  
99 Jennifer Barry, et al., Quantum Partially Observable Markov Decision Processes, American 

Physical Society, MIT OPEN ACCESS ARTICLES 1 (2014), 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.032311. 
100 U.S. Patent No. 9,881,256 (issued Sep.7, 2017); see also Schuld, supra note 51, at 2. 
101 The agent may iterate over the action space, selecting actions according to a defined policy. See 

CHARNIAK, supra note 91, at 113; see also ‘741 Patent; U.S. Patent No. 10,498,855 (issued Dec. 3, 

2019). 
102 Barry et al., supra note 99, at 4 (explaining that in a QOMDP, the agent can track of the 

quantum state using each time it takes an action and receives an observation). 
103 CHARNIAK, supra note 91, at 113.  
104 Barry et al., supra note 99, at 2; see also U.S. Patent No. 10,423,129 (issued Sep. 24, 2019). 
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 The goal for an agent in a QOMDP is to maximize its expected reward 

during the episode.105 The agent’s goal is to maximize its total reward, rather than 

the reward for its immediate state.106 The agent’s policy determines the value the 

agent returns over the course of an episode.107 A policy is a mapping from states to 

probabilities for selecting actions.108 A policy is the way in which an agent makes 

decisions.109 Therefore, the goal for quantum reinforcement learning is to identify 

and select the policy which maximizes expected reward for an agent acting in a 

quantum environment. 110  As these models converge with predictive quantum 

graphs on quantum hardware, Mr. Smith comes to life with only time to scale. 

 

C. QUANTUM CONVERGENCE 

 

 New technologies often represent a convergence of many different streams 

of techniques, devices, and machines, each coming from its own separate historical 

avenue of development. 111  For example, the smart phone manifested as a 

convergence of personnel computers and mobile phones.112 A leading scholar at the 

intersection of patents and technical convergence, University of Cagliari Professor 

Elona Marku explains,113 convergence is “the merging or overlapping of different 

 
105 Episode refers to the total experience of an agent progressing through an environment a 

terminal state. See KOCHENDERFER, supra note 90 at 77; see also ‘855 Patent. 
106 CHARNIAK, supra note 91, at 113.  
107 Formally, the policy is represented as 𝜋. System, method and device for predicting navigational 

decision-making behavior, U.S. Patent No. 8,478,642 (issued July 2, 2013); see also U.S. Patent 

No. 10,146,286 (issued Dec. 4, 2018); KOCHENDERFER, supra note 90 at 79-80; U.S. Patent No. 

10,146,286 (issued Dec. 4, 2018).     
108 KOCHENDERFER, supra note 90, at 80; see also U.S. Patent No. 8,060,454 (issued Nov. 15, 

2011).  
109 KOCHENDERFER, supra note 90, at 80. 
110 Barry, et al., supra note 99, at 2. 
111 CERUZZI, supra note 6, at 74-6.  
112 Interestingly, in 2009 Nokia and Samsung paid a small semiconductor firm in King of Prussia, 

Pennsylvania called InterDigital a combined $653 million over a portfolio of patents for smart 

phone technology. See JOHN PALFREY, INTELL. PROP. STRATEGY 18 (MIT Press 2012); see 

also In re Arbitration Between Interdigital Commc'ns Corp. & Samsung Elecs. Co., Ltd., 528 F. 

Supp. 2d 340 (S.D.N.Y. 2007); InterDigital Commc'ns Corp. v. Nokia Corp., 407 F. Supp. 2d 522 

(S.D.N.Y. 2005).  
113 ELONA MARKU, ET AL., BUSINESS TRANSFORMATIONS IN THE ERA OF 

DIGITALIZATION, Mapping Innovation in the Digital Transformation Era: The Role of Technology 

Convergence, 163 (IGI Global 2019), 
https://www.researchgate.net/publication/329874675_Mapping_Innovation_in_the_Digital_Transf

ormation_Era_The_Role_of_Technology_Convergence (“This is consistent with the technological 

convergence paradigm, two or more technologies move together in the technological space, 

overlapping or merging with each other while generating new innovations.”). 
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fields of technology as a result of scientific and technological progress.”114 At the 

bleeding edge of machine learning, the Deep Q-Network (“DQN”) algorithm, 

represents the deep learning and reinforcement learning convergence. A step 

further, the DQN’s implementation on quantum hardware, the Quantum Q-

Network is a software-to-hardware convergence.115 

 

 1. DEEP Q-NETWORK 

 

 DQNs are deep neural networks embedded in the reinforcement learning 

architecture, representing these two systems’ convergence. 116  The DQN is a 

critically important deep reinforcement learning algorithm.117 The DQN algorithm 

develops an optimal policy118  for an agent with a Q-learning algorithm.119  Q-

Learning is a model-free reinforcement learning technique, a trial-and-error 

algorithm.120 As NYU Law Professor Jeanne Fromer explains, “Q-learning seems 

especially suited for learning the most successful actions in a particular state for a 

system.”121  

 

 
114 Id. at 163 (“Consistent with this stream of research, we conceive technological convergence as 

the merging or overlapping of different fields of technology as a result of scientific and 

technological progress.”). 
115 Schuld et al., supra note 51 at 14 (“Hidden Markov models are Markov processes for which the 

states of the system are only accessible through observations.”).  
116 See generally LESLIE PACK KAELBLING, LEARNING IN EMBEDDED SYSTEMS (1990). 
117 U.S. Patent No. 10,032,281 (issued July 24, 2018); see also Yuval Tassa, et. al., DeepMind 

Control Suite, 12 (2018) (unpublished manuscript), https://arxiv.org/abs/1801.00690 (explaining 

that the Deep Mind Control Suit is a set of tasks for benchmarking continuous RL algorithms 

developed by Google Deep Mind); U.S. Patent No. 10,296,830 (issued May 21, 2019). 
118 The optimal policy is the best method of decision making for an agent with the goal of 

maximizing reward. See KOCHENDERFER, supra note 90, at 81.  
119 It does so by using Q-learning to learn a data labeling policy on a small labeled training dataset, 

and then using this to automatically label noisy web data for new visual concepts. See Serena 

Yeung, et al., Learning to Learn from Noisy Web Videos, Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition 5154-5162 (2017), 

http://openaccess.thecvf.com/content_cvpr_2017/html/Yeung_Learning_to_Learn_CVPR_2017_p

aper.html. 
120  Leslie Pack Kaelbling, et al., Reinforcement Learning: A Survey, J. OF ARTIFICIAL INTEL. 

RSCH. 253 (1996), http://www.cse.msu.edu/~cse841/papers/kaelbling.pdf. 
121   Fromer, supra note 97 at 40, 43 (explaining “Q-learning seems especially suited for learning 

the most successful actions in a particular state for a system. [. . .] These algorithms can calculate 

optimal discourse policies for Markov decision problems (MDPs), accessible, stochastic 

environments with a known transition model.”). 
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 The DQN algorithm combines Q-learning 122  with a neural network to 

maximize an agent’s reward.123  The DQN algorithm’s most important aspect is the 

Bellman Equation.124 The Bellman Equation does two things: it (1) defines the 

optimal policy; and (2) forces the agent to consider the reward in its present state 

as greater compared to rewards in future states.125 The Bellman Equation is a slower 

algorithm in practice and can be computationally expensive. Thus, a neural network 

is used as an approximator for a state-action value function, allowing for more 

efficient programming and model development.126  

 

 The DQN is an off-policy algorithm, meaning it uses data to optimize 

performance.127 But, one problem with training DQN algorithms, and off-policy 

deep reinforcement learning algorithms more generally, is that they are 

computationally expensive. In other words, these algorithms require massive 

 
122 U.S. Patent No. 10,049,301(issued Aug. 14, 2018); see also LAPAN, supra note 8, at 144. 
123 PAUL JOHN WERBOS, THE ROOTS OF BACKPROPAGATION FROM ORDERED DERIVATIVES TO 

NEURAL NETWORKS AND POLITICAL FORECASTING 306-307 (1994). 
124 The algorithm continues perpetually until the convergence of the Q-value function. The 

convergence of the Q-value function represents 𝑄∗ and satisfies the Bellman Equation, defined: 

 

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′~𝜀 [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎]. 

 

Here, 𝐸𝑠′~𝜀 refers to the expectation for all states, 𝑟 is the reward, 𝛾 is a discount factor. 

Additionally, the 𝑚𝑎𝑥 function describes an action at which the Q-value function takes its 

maximal value for each state-action pair.  An agent’s optimal policy 𝜋∗ corresponds to taking the 

action in each state defined by 𝑄∗. In short, the Bellman Equation expresses the relationship 

between the value of a state and the values of its successor states. The algorithm continues 

perpetually until the Q-value function’s convergence with an approximate maximum.  See '454 

Patent (claim 14 and claim 23 both discuss applications of Bellman equations for optimality).  
125 See Jordi Torres, The Bellman Equations, Deep Reinforcement Learning Explained 8 (June 11, 

2020), https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7. 
126 However, one issue that arises is that the value of 𝑄(𝑠, 𝑎) must be computed for every state-

action pair, which may be computationally infeasible. For example, computing the value of every 

state-action pair, where the raw input is pixels in an Atari game would require tremendous 

computational power. One solution is to use a function approximator to estimate the Q-value 

function: 

 

𝑄(𝑠, 𝑎; ∅) ≈ (𝑠, 𝑎). 

 

Here, ∅ represents the function parameters. Thus, the Q-value correlates with an optimal policy, 

telling the agent which actions to take in any given state.  See U.S. Patent Application No. 14/097 

(filed Dec. 5, 2013), https://patents.google.com/patent/US20150100530A1/en. 
127 Hado van Hasselt, Arthur Guez, & David Silver, Deep Reinforcement Learning with Q-

Learning, GOOGLE DEEPMIND 2098 (2018). 
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amounts of computing power.128 As such, these system’s intersection with quantum 

computers provides better way to develop AI technology. 

 

 2. QUANTUM Q-NETWORK 

 

 Quantum Q-Networks (“QQN”) represent the convergence of quantum 

hardware, reinforcement learning, and deep learning technologies, or more 

concisely, the convergence of quantum hardware and the DQN. In 2017, a team of 

quantum researchers published DQN implementations on quantum hardware for 

the first time.129 While the achievement went relatively unnoticed, time will reveal 

this seminal work. The researchers implemented the QQN to solve 3x5 grid-world 

problem.130 The team solved the grid-world problem131 using various Q-learning 

methods with the Q-function parametrized by neural networks on an adiabatic 

quantum computer.132 

 

 There are various ways in which QQN may evolve in QML research, 

application, and patents. For example, the network may sample from a quantum 

processor to optimize action selection, or alternatively, the QQN may integrate a 

deep Boltzmann machine133 within a Markov Decision Process for faster training. 

Future research will employ these models to scale, solving real world problems 

with quantum machine learning. Protecting these innovations could mean the 

difference between market dominance and irrelevance for market firms. 

 

 

 

 

 

 

 
128  See Haney, supra note 87. 
129   Anna Levit, et al., Free energy-based reinforcement learning using a quantum processor 5 

(2017) (unpublished manuscript), https://arxiv.org/abs/1706.00074. 
130 Id. at 7. 
131  The Grid World Problem is a maze where an agent must choose which path to take to exit the 

maze. See Jeremy Zhang, Reinforcement Learning – Implement Grid World, TOWARDS DATA 

SCIENCE (May 4, 2019), https://towardsdatascience.com/reinforcement-learning-implement-grid-

world-from-scratch-c5963765ebff. 
132  Levit, supra note 129, at 6. 
133  “Boltzmann Machines offer a powerful framework for modelling probability distributions. 

These types of neural networks use an undirected graph structure to encode relevant information.” 

Christa Zoufal, et al., Variational Quantum Boltzmann Machines, 1 (2020) (unpublished 

manuscript), https://arxiv.org/abs/2006.06004; see also Fabian Ruehle, Data Science Applications 

to String Theory, PHYSICS REPORTS 90 (2019), https://doi.org/10.1016/j.physrep.2019.09.005 

(explaining the DBM is a feed-forward neural network trained with input-out pairs). 



Journal of Law, Technology & the Internet — Vol. 12 

18 

 

IV. PATENTS 

 

 Patents are the most traditional protection for new technologies.134 From an 

informatics perspective, a patent is a document with data about an invention.135 

Legally, a patent provides the holder a 20-year legal right to prohibit others from 

using, making, or selling an invention without permission. 136  In conferring 

exclusive rights to inventors, a patent grants a de facto monopoly to the holder.137 

In other words, a patent confers the exclusive rights to use and profit from an 

invention to the holder, backed by the Government. The United States Patent and 

Trademark Office (“USPTO”) reviews applications to determine whether a claimed 

invention is: (1) statutory subject matter,138 (2) useful, (3) novel, (4) not obvious, 

and (5) sufficiently described.139 Part IV proceeds by surveying patents for claims 

to QML technologies. 

 

A.  MARKET 

 

 Quantum machine learning refers to new technology representing quantum 

computing and machine learning technical convergence.140 This convergence has 

spawned a new economic market, illustrated by the increasing volume of patents 

for quantum machine learning technologies. 141  Quantum machine learning 

technologies are vital to both the future and present for cybersecurity applications 

 
134 Brian S. Haney, Rocket Patent Strategies, 24 U.S.F. INTELL. PROP. & TECH. L. J. (forthcoming 

2020), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3437353 [hereinafter “Rocket Patent 

Strategies”]; see also JOHN PALFREY, INTELL. PROP. STRATEGY 55 (MIT Press 2012).  
135  MICHAEL BUCKLAND, INFO. AND SOCIETY, 21-23 (2017) (discussing document definitions). 
136 “The Congress shall have the Power…To promote the Progress of Science and useful Arts, by 

securing for limited Times to Authors and Inventors the exclusive Right to their respective 

Writings and Discoveries.” U.S. Const. art. I, § 8, cl. 8; see Stephen Yelderman, The Value of 

Accuracy in The Patent System, 84 U. CHI. L. REV. 1217, 1270 (2017).  
137  Bryce C. Pilz, Student Intellectual Property Issues on the Entrepreneurial Campus, 2 MICH. J. 

PRIVATE EQUITY & VENTURE CAP. L. 1, 16 (2012). 
138 The first element of the statutory requirements, statutory subject matter, includes any new 

process, machine, manufacture, or composition of matter, or any new and useful improvement 

thereof. 35 U.S.C.S. § 101 (2020). 
139 35 U.S.C.S. § 112 (2020). 
140  “Consistent with this stream of research, we conceive technological convergence as the 

merging or overlapping of different fields of technology as a result of scientific and technological 

progress.” MARKU, ET AL., supra note 113, at 163. 
141 See Boom in Artificial Intelligence patents, points to ‘quantum leap’ in tech: UN report, UN 

NEWS (Jan. 31, 2019), https://news.un.org/en/story/2019/01/1031702.  
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in modern warfare, 142  encryption schemes for financial transactions, 143  and 

chemical modeling for new drug developments.144 

 

 1. DATASET 

 

 To survey patents on subject for this Article, patent data was aggregated 

from the results of patent claims searches for four terms: “Quantum AND 

Machine_Learning”, “Quantum AND Markov”, “Quantum AND Boltzmann”, and 

“Quantum AND Neural_Networks.”  These search terms were selected to capture 

instances of quantum reinforcement learning, deep learning, and deep 

reinforcement learning. 

 

 

 
Figure 4145 

 

The dataset includes 63 total patents, the majority of which relate to neural network 

technologies. This is unsurprising given the technology’s general application across 

 
142  See e.g.,‘553 Patent. 
143  Blockchain, supra note 17. 
144  See e.g., Tabrez Ebrahim,, Computational Experimentation, 21 VAND. J. OF ENTM’T & TECH. 

L. 591 (2019). 
145  The information contained in this chart was prepared by the author with information from the 

United States Patent and Trademark Office. A copy of the data is on file with the author. 
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industry for predictive purposes. For example, neural networks are used in law for 

document review146 and medicine for diagnostics.147 

 

 2. GROWTH TRAJECTORY 

 

 As a whole, the market’s trajectory is now experiencing near vertical 

growth. Interestingly, the market’s volumetric increase is more similar to the 

machine learning patent market than QML patent market.148 

 
Figure 5149 

 

In total, this sample reflects a marketplace with sixty-three total patents. By total 

patents, the market size was 30 in the year 2017, 40 in 2018, and 63 in 2019.   

 

 

 

 
146  See e.g., Applied Natural Language, supra note 63, at 25.   
147  See Ava P. Soleimany, et al., Image Segmentation of Liver Stage Malaria Infection with 

Spatial Uncertainty Sampling  (2019) (unpublished manuscript), https://arxiv.org/abs/1912.00262. 
148  See Haney, supra note 87. 
149  Supra note 145. 
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 3.  OWNERSHIP 

 

 Figure 6 graphs the firms with the largest stake in the market. These firms 

reflect the leaders among those developing research at the intersection of quantum 

computing and machine learning. 

 
Figure 6150 

 

Individual inventors own the majority of the market, with 12 total patents belonging 

to original inventors. D-Wave, the Canadian quantum computing company, is the 

market’s leading firm with nine patents. Universities own seven patents in the 

dataset. Rigetti, a Y-Combinator startup and full-stack quantum computing 

company, owns two patents in the sample. 

 

B. LEGAL CLAIMS 

 

 Patent claims mark the invention’s boundaries, defining the particular thing 

invented and making the public aware of the invention.151 Patent claims generally 

define devices, structures, or methods.152 The USPTO will issue a patent only for 

claims it determines satisfy the statutory requirements, and a challenge to an issued 

patent will succeed if the challenger can show that any of these requirements have 

not been met.153 Further, courts construe patent claims by starting with the plain 

 
150 Id.  
151  KEVIN F. O’MALLEY, ET AL., 3A FED. JURY PRAC. & INSTR. § 158:41 (6th ed. 2019). 
152  Mark A. Lemley, The Changing Meaning of Patent Claim Terms, 104 MICH. L. REV. 101, 107 

(2005). 
153  Max Stul Oppenheimer, Patents 101: Patentable Subject Matter and Separation of Powers, 15 

VAND. J. ENT. & TECH. L. 1, 4 (2012). 
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meaning,154 as they would be understood by a person having ordinary skill in the 

art.155 Claims are the most important part of a patent156  because claims are the only 

part of the patent that can be infringed.157 

 

 1. DEFINITENESS 

 

 Patent claims require “definiteness” which demands specifications “shall 

conclude with one or more claims particularly pointing out and distinctly claiming 

the subject matter” of the invention.158 According to the United States Supreme 

Court, “a patent is invalid for indefiniteness if its claims, read in light of the 

specification delineating the patent, and the prosecution history, fail to inform, with 

reasonable certainty, those skilled in the art about the scope of the invention.”159 

The reasonable certainty standard balances two interests: 160  (1) patent claims 

should provide the public with clear notice of the patent’s exclusionary rights;161 

(2) further, the “definiteness requirement must take into account the inherent 

limitations of language.”162  

 

 There are objective measures for definiteness.163 For example, a claim’s 

definiteness depends on whether the terms used in the claim have ascertainable 

meanings.164 Thus, claim term definitions are useful in analysis.165 If a particular 

claim term is not defined in the specification, then this suggests that the claim is 

less likely to be definite because the patent’s specification “may not provide the 

 
154 See e.g., Gonzales v. Raich, 125 S.Ct. 2195, 2205, 2230 (2005) (Thomas, J., dissenting) 

(discussing textualism and the plain meaning doctrine). 
155  Mark A. Lemley, The Changing Meaning of Patent Claim Terms, 104 MICH. L. REV. 101, 102 

(2005). 
156 Id. at 101. 
157  O’MALLEY, ET AL., supra note 151. 

158 35 U.S.C. § 112(b) (2012). 

159  Nautilus, Inc. v. Biosig Instruments, Inc., 572 U.S. 898, 901 (2014); see also Mark A. 

Lemley, Software Patents and The Return of Functional Claiming, 2013 WIS. L. REV. 905, 930 

(2013) (“A related problem is the uncertainty associated with the meaning and scope of a software 

patent.”). 
160  Dean Alderucci, The Automation of Legal Reasoning: Customized AI Techniques for the 

Patent Field, 58 DUQ. L. REV. 50, 77 (2020). 
161 Id. at 77, n.116 (“Clear notice is necessary to avoid ‘[a] zone of uncertainty which enterprise 

and experimentation may enter only at the risk of infringement claims.’”) (internal citations 

omitted). 

162 Nautilus, 572 U.S. at 899. 
163  See Alderucci, supra note 160, at 80. 
164  Cox Communs., Inc. v. Sprint Comm’n Co. LP, 838 F.3d 1224, 1232 (Fed. Cir. 2016). 
165  Alderucci, supra note 160, at 78. 
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person of ordinary skill with enough information to understand the meaning of the 

term.”166 

 

 A second example of objective metrics correlating with definiteness is the 

presence of a coined term. In other words, the patent drafter is permitted to use 

claim terms of her own devising.167 If the term has never appeared in any previous 

publication, then it is possible that the person of ordinary skill would not ascribe a 

definite meaning to the term.168 Thus, if a claim term is both coined and undefined, 

the claim is less likely to be considered definite.169 

 

 Third, descriptive claim terms relating to unspecified limits, terms of 

degree, 170  and adjectives 171  all correlate with a higher probability of 

indefiniteness.172 For example, the claim may include a term of degree, such as a 

temporal distance between actions that must be “substantially equal.” Thus, to 

avoid indefiniteness there should be some standard for measuring degree.173 

 

 Consider U.S. Patent 10,396,919, which related to manipulating signals 

with machine learning.174 The terms, artificial neural network, convolutional neural 

network, and deep dense neural network are all present in the claims.175 And yet, 

none of these terms are defined in the patent. Instead, the patent discusses the terms 

only by reference, for example, “[t]he machine-learning network may include an 

artificial neural network (ANN). Adjusting parameters of the machine-learning 

 
166 Id. at 78-79. 
167 Id. at 79 (“[T]he patent drafter may invent a new term rather than using a term known in the 

relevant technical literature. Such terms need not have ever appeared in any previous 

publication.”) (internal citations omitted).  

168 Advanced Ground Info. Sys., Inc. v. Life360, Inc., 830 F.3d 1341, 1349-150 (Fed. Cir. 2016) 

(holding that claim term “symbol generator” was not a term of art and was indefinite). 
169 See Capital Sec. Sys. V. NCR Corp., 725 Fed. Appx. 952, 959 (Fed. Cir. 2018) (affirming 

district court’s holding of indefiniteness because the claim term “‘transactional operator’ has no 

commonly-accepted definition and its scope is unclear in view of the intrinsic evidence.”). 
170  See Alderucci, supra note 160, at 80 (“[D]efiniteness does not require . . . mathematical 

precision. Terms of degree without numerical limits can nevertheless be considered definite, 

particularly if the relevant field of technology admits no more precise way of specifying the 

invention. The key issue is whether the specification provides some standard for measuring that 

degree.”).  
171  Adjectives are problematic because they induce vagueness. For example, adjectives such as 

“agile” can be ambiguous as to a requisite degree of software agility, thus rendering the term 

indefinite. Cf. Halliburton Energy Serv’s. v. M-I LLC, 514 F.3d 1244, 1256 (Fed. Cir. 2008) 

(determining the words “fragile gel” are not sufficiently definite and ambiguous). 
172  Alderucci, supra note 160, at 79. 
173  See id. at 80.  
174  ‘919 Patent at col. 1, l. 37-41. 
175  Id. at col. 1, l. 48, 59-60. 
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network may include updating at least one of: a connectivity in one or more layers 

of the ANN, or a weight of connection in one or more layers of the ANN.”176And 

yet, there are many types of artificial neural networks which provide many different 

ways in which neural architectures may be arranged.177  As such, this patent’s 

claims are less likely to be construed as definite if challenged. 

 

 In sum, if the claim provides enough certainty to one skilled in the art when 

read in the invention’s context, then the claim is definite.178 And, there are at least 

three objective factors correlating with claim definiteness: “(1) whether the terms 

in the claims are defined or used in the patent; (2) whether the claim term appears 

to be coined rather than in common usage; and (3) whether any claim terms are 

inherently vague words.”179 

 

 2. NONOBVIOUSNESS DOCTRINE 

 

 A patent claim is invalid “if the differences between the claimed invention 

and the prior art are such that the claimed invention as a whole would have been 

obvious . . . to a person having ordinary skill in the art.”180  As NYU Law Professor 

Jeanne Fromer explains, “The nonobviousness doctrine seeks to ensure that patents 

are granted only for technologically significant advances to foster the patent 

system’s goal of stimulating useful innovation.” 181  In other words, the non-

obviousness requirement’s goal is to limit patents for only those inventions 

representing a sufficiently large advance over previously known technology.182 The 

statute requires that obviousness be judged from the perspective of the person 

having ordinary skill in the art,183 and claims be invalidated if that person would 

find the claimed invention to be obvious.184 

 

 “A full analysis of the obviousness of a patent claim requires understanding 

the patent’s technology, the state-of-the-art in the technologies field, and the 

 
176  Id. at col. 2, l. 41-45. 
177  See Brian S. Haney, Patents for NLP Software: An Empirical Review, IUP J. KNOWLEDGE 

MGMT. 1, 11 (2020) (defining and discussing recurrent neural network and convolutional neural 

network architectures). 

178 Alderucci, supra note 160, at 80. 
179  Id. at 80-81. 

180 35 U.S.C. § 103 (2013). 
181 Jeanne C. Fromer, The Layers of Obviousness in Patent Law, 22 HARV. J. OF L. & TECH. 75, 79 

(2008).  

182  See Sensonics, Inc. v. Aerosonic Corp., 81 F.3d 1566, 1570 (Fed. Cir. 1996). 

183 Endress + Hauser Inc. v. Hawk Meas. Sys. Pty., 122 F.3d 1040, 1042 (Fed. Cir. 1997); see 

also Alderucci, supra note 160, at 70 (analogizing the person having ordinary skill in the art to the 

“reasonable man” in other areas of law). 
184  Alderucci, supra note 160, at 69. 
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differences between the two.”185  For example, consider claim three from U.S. 

Patent No. 10,229,355 (‘355 Patent).186 

 

3. A method for training the neural network 

implemented in the quantum processor claimed in 

claim 2, the method comprising: providing 

initialization data for initializing the plurality of 

couplers and the superconducting quantum circuits 

of the quantum processor; until a criterion is met: 

performing a quantum sampling of the quantum 

processor to provide first empirical means; obtaining 

at least one training data instance for training the 

neural network; performing a quantum sampling of 

the quantum processor; wherein no bias is assigned 

to the superconducting quantum circuits of the first 

group: wherein couplings of the first group and the 

second group are switched off; further wherein the 

biases of the second group are altered using the 

biases on a first group of neurons associated with the 

first group of superconducting quantum circuits, the 

weights of the switched off couplings, and the at least 

one training data instance, to determine second 

empirical means; updating corresponding weights 

and biases of the couplers and the superconducting 

quantum circuits of the quantum processor using the 

first and second empirical means; and providing final 

weights and biases of the couplers and the 

superconducting quantum circuits of the quantum 

processor indicative of data representative a trained 

neural network.187 

 

 The ‘355 Patent’s claim three, includes the specific details for a method by 

which a neural network is implemented on a quantum computer. The state-of-the-

art in neural network implementations on quantum processors is a complex and 

convoluted kluge of research, software code, and patents.188 As such, implementing 

a neural network on a quantum processor is obvious. But, by detailing the method 

 
185  Id. at 70. 
186  U.S. Patent No. 10,229,355 col. 1, l. 24-53 (issued March 12, 2019). 
187 Id. 
188 See Schuld, et al., supra note 51, at 4 (“Reinforcement learning is a central mechanism in the 

development and study of intelligent agents.”); see also ‘232 Patent at col. 1, l. 22-28. 
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narrowly to the specific application, the claim was granted as a nonobvious 

improvement. 355’ Patent’s claim three provides detailed descriptions for the 

quantum computer’s bias, couplings, and the neural network’s data flow.189 

 

 Ultimately, obviousness is a question of law,190 but it relies upon factual 

inquiries including “the scope and content of the prior art, the differences between 

the prior art and the claims of the patent, and the level of ordinary skill in the art.”191 

Further, these factual considerations may be objectively measured to identify 

probabilistic correlation. The relationship between the prior art and the patent could 

be objectively measured according to the relative syntactic similarity between the 

prior art claims and patent claims.192 Regardless, a claim’s novel is both a critical 

and complex assessment for QML Patents. 

 

 3. NOVELTY 

 

 A third component for patent claims is that they must claim a novel 

technology.193 Patents represent externally validated technical novelty measured 

with clear economic significance, such as vetted new products and innovation.194 

Larissa Bifano, a partner in DLA Piper’s Boston Office, and leading expert on 

machine learning patent explains, “[i]n addition to the technical details, establishing 

a narrative of the inventive concept can greatly help practitioners during the 

prosecution stage.”195 Indeed, patent law requires that an invention be novel, or 

 
189 ‘355 Patent at col. 1, l. 24-53.   
190 Graham v. John Deere Co., 383 U.S. 1, 17-18 (1966). 

191 Alderucci, supra note 160, at 70 (“Additional facts such as commercial success of the 

invention, long felt but unsolved needs solved by the invention, and the failure of others to create 

the invention can also be relevant to determining whether a patent claim is obvious.”). 
192  Fromer, supra note 181, at 100 (“By demonstrating that obviousness ought to be investigated 

at an invention’s two layers of conception and reduction to practice, this Article provokes a 

broader question of the relative importance of conception and reduction to practice in the patent 

system’s understanding of invention.”). 
193 “The United States Patent and Trademark Office . . . may deny patent applications and 

trademark registrations to applicants who do not meet the necessary requirements.” Sarah Murphy, 

Heads I Win, Tails You Lose: The “Expense” of a De Novo Review of USPTO Decisions, 60 

B.C.L. REV. II.-197, II.-197 (2019); see 35 U.S.C. § 2(a) (2012). 
194  M. C. Guardo & K. R. Harrigan, Shaping the path to inventive activity: the role of past 

experience in R&D alliances, 41 J. TECH. TRANSFER 250, 258 (April 2016) (“Not only do they 

represent an externally validated measure of technological novelty with a clear economic 

significance, but they have also been empirically shown to correlate very well with other possible 

measures of technological performance such as new products or innovation counts.”). 
195  Larissa Bifano, et al., Protecting AI technologies through patents: a US guide, DLA PIPER 

(May 7, 2020), https://tinyurl.com/4afe5a3k [https://perma.cc/VA3K-ZFME] (“Recent case law 

and US Patent Office guidance have focused on identifying the technical improvement that results 

from the artificial intelligence innovation.”). 
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new.196 And yet, still accusations are directed at patent quality, specifically, the lack 

of novelty in inventions.197 

 

 Further, the rapid introduction of QML patents into the patent system means 

that within a relatively short time, the background conditions for QML innovation 

have been configured. 198  Consider claim one and three from U.S Patent No. 

7,383,235 (‘235 patent):199 

 

1. A method for controlling a process driven by a 

control signal for producing a corresponding output, 

the method comprising: generating an error signal as 

a function of a state of the process and of a reference 

signal; generating a control signal as a function of the 

error signal and of a parameter adjustment signal and 

providing the control signal to the process; 

generating a signal representative of a quantity to be 

minimized by processing paired values of the state of 

the process and the control signal; and generating a 

correction signal from a set of several different 

values of the control signal that minimizes the 

generated signal to be minimized, the correction 

signal being periodically calculated by 

a Quantum Genetic Search Algorithm comprising a 

genetic algorithm and a quantum search algorithm 

merged together . . . 

 

3. A method according to claim 1 wherein the 

parameter adjustment signal is generated using 

a neural network and a fuzzy logic processor based 

upon the error signal and the correction signal.”200 

 

 
196  See e.g., Mark A. Lemley & Mark P. McKenna, Scope, 57 WM. & MARY L. REV 2197, 2240 

(2016) (“Because patent law requires that an invention be novel and nonobvious, it should be clear 

that a patent owner is not entitled to sue someone for using technology that existed before she ever 

‘invented’ it.”). 
197  Stefania Fusco, Trips Non-Discrimination Principle: Are Alice and Bilski Really The End of 

NPES?, 24 TEX. INTELL. PROP. L.J. 131, 139 (2016). 
198 Cohen, Julie E. and Lemley, Mark A., Patent Scope and Innovation in the Software Industry, 

89 CAL. L. REV. 1, 14 (2001).  
199 U.S. Patent No. 7,383,235 (issued June 3, 2008). 
200 Id. at col. 40, 41.  
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 The ‘235 patent’s claims describe integrating a quantum search algorithm 

with a genetic algorithm, which is then implemented on a quantum processor using 

a neural network.201 Here, the ‘235 patent’s drafters advanced the patent’s novelty 

by specifically detailing the innovation. Indeed, quantum search algorithms nor 

quantum neural networks are novel innovations, but the way in which the patent 

aggregates these various systems may well be novel.202 

 

 Further, Professor Elona Marku and Professor Maria Chiara Di Guardo at 

the University of Cagliari in Italy are developing objective measures for innovation. 

In fact, they have developed a quality formalism for measuring patent originality, 

which may be modified to measure novelty.203 According to Professor Marku, the 

algorithmic measure “captures the breadth of the technological knowledge bases 

that have been synthesized in the focal patent and captures the antecedent 

technology embodied in each patent.”204  The concept is that the “synthesis of 

divergent ideas is characteristic of research that is highly original and basic, and 

that originality stems from the breadth of search.”205 

 

  

 

 

 

 

 

 

 

 

 
201 Id. at Abstract. 
202 See generally, Lov K. Grover, Quantum Computers can Search Arbitrarily Large Databases by 

a Single Query, 79 PHYSICAL REV. LETTERS 4709 (1997); ‘466 Patent. 
203 Elona Marku, et al., Quantity at expense of quality? Measuring the effects of “successful” 

M&A on innovation performance 8 (2020) (on file with author) [hereinafter “Quantity at the 

expense of quality?”]. The originality algorithm may be modified as follows to measure novelty: 

 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑖 = 1 − ∑𝑆𝑖𝑗
2

𝑛𝑖

𝑗=1

 

 

where 𝑆𝑖𝑗  represents the backward citations of patent 𝑖 that have class code 𝑗, out of 𝑛𝑖 different 

patent technology classes during the four-year, pre-acquisition and post- acquisition windows, 

respectively.  
204 Quantity at expense of quality?, supra note 203. 
205 M. C. Guardo & K. R. Harrigan, Shaping the path to inventive activity: the role of past 

experience in R&D alliances, 41 J. OF TECH. TRANSFER 250, 259 (2016). 
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 4. SCOPE 

 

 A patent’s scope depends on the relevant patent’s defined protectable 

rights.206 The scope question is not limited to validity or infringement.207 Rather, 

scope refers to the range of things patent right protects against competition.208 A 

patent’s scope is largely defined by the claim’s transitional phrase. The most 

common transitional phrases are: comprising, consisting essentially of, and 

consisting of.209 According the United States Patent and Trademark Office: (1) 

Comprising means the invention includes but is not limited to the elements 

identified in the claim; (2) Consisting essentially of limits the scope of a claim to 

the specified materials or steps and those that do not materially affect the basic and 

novel characteristic(s) of the claimed invention; and (3) Consisting of is closed and 

means that the invention is limited to the elements identified in the claim.210 

 

 As such, claim drafting involves a balancing of interest. First, patent rights 

claiming a broad scope are more likely to be invalid because they may tread on the 

rights of prior art.211 Second, patent rights with a narrower scope are more likely to 

be valid, but a narrower scope may limit the firm’s freedom of action in engineering 

and design as a result.212 

 

 The balance of interest in claim drafting is not a dichotomy, but rather a 

continuous scale, which may be measured with objective metrics.213 Appreciation 

for the balancing of validity and ownership rights is critical for both QML claim 

drafting. For example, consider the similarities and differences between Google’s 

 
206See Colleen Chien, Software Patents as a Currency, Not Tax, on Innovation, 31 BERKELEY 

TECH. L.J. 1669, 1681 (2017) (“The boundaries of patent rights are also more readily ascertainable 

than trade secrets, defining the duration of the right and the scope of the claims so that the parties 

do not have to do so.”). 
207 Mark A. Lemley & Mark P. McKenna, Scope, 57 WM. & MARY L. REV 2197, 2202 (2015). IP 

regimes require, not just similarity between the defendant’s and plaintiff’s works, but similarity 

with respect to the protectable elements. Id. at 2209. 
208 See id. (citing Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. REV. 

1575, 1675 (2003)); see also Stefania Fusco, Trips Non-Discrimination Principle: Are Alice 

and Bilski Really The End of NPEs? 24 TEX. INTELL. PROP. L.J. 131, 137–138 (2016) (discussing 

patentable subject matter bounds). 
209  Jean Witz & Kara Geisel, Claim Drafting, U.S. PTO (2017), 

https://www.uspto.gov/sites/default/files/documents/Website%20PDF%20-

%20Invention%20Con%202017%20Claim%20Drafting%20Workshop%20-%20OPLA.pdf.  
210 Id. at 14.  
211 Lemley & McKenna, supra note 207.   
212 JOHN PALFREY, INTELL. PROP. STRATEGY 3 (MIT Press, 2012). 
213 See Lemley & McKenna, supra note 207.   
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‘466 patent and Rigetti’s ‘743 patent, both of which claim variant Quantum 

Boltzmann Machines (QBMs) for machine learning. Google’s ‘466 patent claims: 

 

1. A method performed by a system of one or more 

computers for probabilistic inference in a model for 

use in machine learning, the method comprising: 

receiving data for training the model, the data 

comprising observed data for training and validating 

the model, and wherein the model is a modified 

restricted Boltzmann machine that includes 

interactions among hidden units of the restricted 

Boltzmann machine, wherein the interactions are 

based on hardware connections of a quantum oracle 

implemented using a quantum machine comprising 

an adiabatic quantum computing system, the 

hardware connections comprising couplers that 

connect qubits included in the quantum oracle; 

deriving input to the quantum oracle using the 

received data and a state of the model, the input 

mapping at least some interactions of different 

interconnected units of the model to connections 

between qubits in the quantum oracle; providing the 

input to the quantum oracle for learning the inference 

in the model; and receiving from the quantum oracle 

data representing the learned inference.214 

 

 The ‘466 claims a method for probabilistic inference, data processing, and 

machine learning utilizing a Restricted Boltzmann Machine (RBM) 215  and a 

quantum oracle, implemented on and AQC.216 The claim narrowly describes the 

relationship between a quantum oracle, qubit connectivity, and data flow. 

 

 Consider the scope of Google’s ‘466 patent’s claim 1, compared to the 

scope of Rigetti’s ‘743  patent’s claim 7. Rigetti’s ‘743 patent claims: 

 

 
214 U.S. Patent No. 10,339,466 (issued July 2, 2019).  
215 See also Geoffrey Hinton, University of Toronto, Advanced Machine Learning: Restricted 

Boltzmann Machines (2013) (presentation accessed at 

https://www.cs.toronto.edu/~hinton/csc2535/notes/lec4new.pdf); Volodymyr Mnih, et al., 

Conditional Restricted Boltzmann Machines for Structured Output Prediction (2012) (unpublished 

manuscript), https://arxiv.org/abs/1202.3748.  
216 See Adiabatic Quantum Computation with Superconducting Qubits, ‘283 Patent.  
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6. The heterogeneous computing method of claim 1, 

wherein the computer program code is configured to 

execute a training algorithm, and the second 

computing task comprises gradient estimation by 

quantum sampling. 

 

7. The heterogeneous computing method of claim 6, 

comprising: by operation of the host processor unit, 

obtaining a Boltzmann machine state and a training 

vector; by operation of the host processor unit, 

generating the set of instructions for the quantum 

processor unit based on the Boltzmann machine state 

and training vector, the set of instructions configured 

to cause the quantum processor unit to perform a 

gradient estimation by quantum sampling algorithm 

based on the Boltzmann machine state and training 

vector; by operation of the quantum processor unit 

executing the set of instructions, generating a set of 

gradient values by executing the set of 

instructions.”217 

 

The 743’ patent’s claim 7 describes a heterogeneous computing method utilizing 

gradient estimation, quantum sampling, and a Boltzmann machine state and 

training vector.218 Further, the method’s operation as a set of instructions using a 

quantum processor is claimed.219 

 

 Some argue the characteristics of the software industry requires a narrow 

approach to questions of patent scope. 220  Some contend the process of claim 

construction determines the patent’s scope. 221  Such an approach is useful in 

considering the ‘743 and ‘466 patents because literal readings of both patents are 

subject to narrow interpretation relating to legal claim. While both patents discuss 

quantum processing methods utilizing a QBM, the claims’ structures differ enough 

to identify their legal and technical independence. 

 

 In sum, four important considerations for QML claim drafting are (1) 

definiteness, (2) non-obviousness, (3) novelty, and (4) scope. Avoiding terms of 

 
217 U.S. Patent No. 10,402,743, 21 (issued Sep. 3, 2019). 
218 Id. 
219 Id. 
220 Cohen & Lemley, supra note 198, at 37.  
221 Id.  
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degree improves the probability a claim will be interpreted as definite. Obviousness 

is heavily dependent on a fact intensive analysis, which is highly complex for 

Quantum Patents. Novelty requires patents represent an externally validated 

measure of technological significance. Considerations to scope balance the legal 

claim’s breadth and the higher probability narrow patents are ruled valid. Perhaps 

most importantly, each of these four considerations contribute to the patent’s 

economic value. 

 

C. VALUATION 

 

 In the year 1851, the Economist said, “[p]atents are like lotteries, in which 

there are a few prizes and a great many blanks.”222 A report on patent value from 

1997 states, “[u]ncertainty about the value of patent is nothing new.”223 Yet, while 

some characteristics of the patent market are still analogous to lotteries, others are 

starkly different. For example, in lotteries, the drawn numbers are random, no one 

knows which numbers will win prizes and which will be blanks before the drawing, 

and each ticket has a statistically equal chance to win. But patents are different. 

With patents, the patents are not filed randomly, one can predict which patents will 

be valuable and which will be worthless, and one can increase the patent’s value 

proactively – improving the chance a particular patent will be relatively valuable. 

The key difference is randomness, patents are not randomly valuable. 

 

 The way in which patents are valued is a crucial consideration for a firm’s 

strategic planning. The patent system is “designed to encourage innovation by 

offering a temporary monopoly over inventions or works of authorship.”224 Yet, 

one problem with the patent system is that it lacks standard models for valuation. 

As a result, this author has also argued that patent valuation involves a degree of 

speculation.225 Thus, insights which help to improve patent value objectivity add 

value to an organization.226 In other words, an informed, transparent, and data-

 
222 Amendment of the Patent Law, THE ECONOMIST, Jan. 1, 1851, at 811. 
223 See also Robert Pitkethly, The Value of Patents 1 (J. Inst. Working Paper No. 21) (1997). 
224 Benjamin N. Roin, Intellectual Property Versus Prizes: Reframing the Debate, 81 U. CHI. L. 

REV. 999, 1001 (2014). 
225 Blockchain, supra note 17, at 149 (presenting a speculation argument as to patent value validity 

is fallaciously prescriptive because value is inherently subjective rather than intrinsic; indeed, 

value is a concept ascribed by people to things in their environment, not something intrinsic 

emanating from objects); see also Pitkethly, supra note 223 at 3 (“Patent valuation requires 

making judgements about the future in much the same way that stock market prices have 

embedded in them judgements of investors about the future performance of a company.”). 
226 See also  Pitkethly, supra note 223 at 19. 
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driven decision227 within a defined model isn’t any more speculative than any other 

asset valuation.228 A review of patent valuation literature reveals three overarching 

models for patent valuation: income models, cost models, and market models.229 

 

 1. MODELS 

 

 Income models value assets based on the economic benefit expected to be 

received over the asset’s life.230 The underlying theory is that the extent to which 

patents affect a technologies ability to generate income, influences the patents 

valuation.231 Factors for income models include: future profits, reasonable royalty, 

and cash flow analysis.232 Income models are particularly popular for determining 

damages in patent litigation, which can help to determining patent value.233 But, 

income models struggle to account for investment costs, which mature over time 

and are subject to market uncertainties.  

 

 “[C]ost models . . .  are based on the idea that the trade secret is worth the 

amount it cost its owner to develop and protect.”234 The assumption underlying cost 

models is the expense of developing a new asset is commensurate with the 

economic value the asset can provide during its life.235 Cost models are favorable 

to QML technology– which has most of its value in the future. Cost models 

incentivize firms to keep good accounts of research and development (R&D) 

spending, making the model appealing for its precision.236 But, it is likely some 

QML R&D cost and financial information is classified due to the technology’s 

 
227 Note that most daily decisions are made unconsciously. See Andrew Campbell et al., Why 

Good Leaders Make Bad Decisions, HARV. BUS. REV. (February 2009).  
228 JAMES W. CORTADA, INFO. AND THE MODERN CORP. 3-4 (2011) (discussing knowledge as a 

vital asset class for corporations). 
229 Rocket Patent Strategies, supra note 134, at 9. 
230 See Ted Hagelin, A New Method to Value Intellectual Property, 30 AIPLA Q.J. 353, 363 

(2002) (discounting on the asset’s present value). 
231 See id. at 364. 
232 See generally Gavin C. Reid et al., What’s it Worth to Keep a Secret?, 13 DUKE L. & TECH. 

REV. 116 (2015). 
233Amy L. Landers, Patent Valuation Theory and the Economics of Improvement, 88 TEX. L. REV. 

163, 166 (2010) (“Patent damages are a make-whole remedy, intended to restore the patentee to 

the same position as before the infringement.”); see also Mark A. Lemley, Distinguishing Lost 

Profits from Reasonable Royalties, 51 WM. & MARY L. REV. 655, 669 (2009) (explaining that 

patent law aims to provide patentees with payment for lost profits and other competitive harm 

suffered through infringement). 
234 Reid, et al., supra note 232, at 139. 
235 See Hagelin, supra note 230, at 359. 
236 Id. at 360. 
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potential for cybersecurity237  and defense applications.238  Regardless for QML 

technology, costs models may raise R&D costs, patent prosecution fees,239 and 

engineering fees.240 

 

 Market models define fair market value for a technology.241 The global 

quantum computing market’s value remains difficult to define, but recent reports 

suggest in the aggregate the market is receiving at least $8 billion in both public 

and private investment annually.242 The fair market value for a particular patent in 

the market is determined by assessing the price a buyer would pay a seller for the 

technology. 243  In addition to a technology’s market value, the technology’s 

commercialization is also important in this assessment.244 A patent’s ability to sells 

 
237 In the aggregate, “U.S. payment, clearing, and settlement systems process approximately 600 

million transactions per day, valued at over $12.6 trillion. Many of these systems rely on security 

systems rely Public-Private Key Cryptography.” Blockchain, supra note 17, at 126. And, 

according to a Royal Society Open Science Report, quantum computers are “capable of deducing 

the private key from a formerly revealed public key with little effort.” I. Stewart, et 

al., Committing to Quantum Resistance: A Slow Defense for Bitcoin Against a Fast Quantum 

Computing Attack., R. SOC. OPEN SCI. 5: 180410, at 5 (2018), 

https://royalsocietypublishing.org/doi/10.1098/rsos.180410.  
238 See Brian S. Haney, Automated Source Selection & FAR Compliance, 48 PUB. CONT. L.J. 751 

(2019) (stating that the United States annual defense budget exceeds $700 billion). 
239 Stuart J.H. Graham & Ted Sichelman, Why Do Start-Ups Patent? 23 BERKELEY TECH. L.J. 

1063, 1085 (2008) (“Simple economics suggest that the high cost of patenting will deter some 

inventors from filing.”).  
240 One factor which may be considered in a cost model is a patent’s inventorship. It follows, the 

inventor’s prestige and time spent developing a patent may be considered correlational with patent 

quality. “However, a counterargument is such estimations may overlook inventions by a single 

previously unknown inventor which took substantial time and effort.” Heather Hamel, Valuing the 

Intangible: Mission Impossible? An Analysis of The Intellectual Property Valuation Process, 5 

CYBARIS 183, 187 (2014). Prestige and time may also correlate with the capacity of a granted 

patent to meet “the statutory standards of patentability—most importantly, to be novel, 

nonobvious, and clearly and sufficiently described.” R. Polk Wagner, Understanding Patent-

Quality, 157 U. PA. L. REV. 2135, 2138-39 (2009).  
241 See Gavin C. Reid, et al., What’s it Worth to Keep a Secret?, 13 DUKE L. & TECH. REV. 116, 

140 (2015). 
242 See QUANTUM COMPUTING: PROGRESS AND PROSPECTS, 7-18 (Emily Grumbling & Mark 

Horowitz eds., The National Academies Press 2018) (defining investments by China, the 

UK, Australia, Sweden, and the EU).  
The broader technology market accounts for more than $12 trillion in annual economic activity. 

See also HUAWEI & OXFORD ECONOMICS, DIGITAL SPILLOVER, MEASURING THE TRUE IMPACT OF 

THE DIGITAL ECONOMY 2, 29 (2017) (measuring market in 2016 as $11.5 trillion, growing at 2.5x 

the rate of global GDP); JOHN PALFREY, INTELLECTUAL PROPERTY STRATEGY 126 (MIT Press 

2012).     
243 See Hamel, supra note 240, at 204.  
244  See W. Michael Shuster, Artificial Intelligence and Patent Ownership, 75 WASH. & LEE L. 

REV. 1945, 1985 (2018).  
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impacts its market valuation.245 For example, ownership rights in the latest QML 

technologies for cybersecurity or supply chain optimization increase firm value 

insofar as the underlying technology can be sold or licensed.246 

 

 Yet still, no single formalized rule exists for technology valuation.247 The 

aim in valuing patents is to enable those managing them to know their value 

sufficiently accurately to make well-founded decisions concerning their 

management.248 Therefore, there exists a need for formalized and objective patent 

value metrics to improve efficiency, objectivity, and transparency in technology 

transactions. 

 

 2. METRICS 

 

 Some view “patents as economic assets, per se.”249 Yet, many patents turn 

out to be worthless.250 Others argue, “any valuation method is merely a starting 

point or a help towards better decision making.”251  By defining objective patent 

value metrics with reference to the three valuation models, this Article aims to 

provide a concrete framework for QML Patent valuation. One scholar argues 

valuable patents can be identified, at least in the aggregate. 252  Substantively, 

valuable patents cite more prior art, make more claims, and have more inventors.253  

 
245 See Malcom T. Meeks & Charles A. Eldering, PhD, Patent Valuation: Aren’t We Forgetting 

Something? Making the Case for Claims Analysis in Patent Valuation by Proposing a Patent 

Valuation Method and a Patent-Specific Discount Rating Using the CAPM, 9 NW. J. 

TECH. & INTELL. PROP. 194, 199 (2010); see also Shuster, supra note 244, at 1987 (“[A]ny 

patentee can attempt to monetize its patents by selling the rights to practice the technology[.]”).  
246 Shuster, supra note 244, at 1987. 
247 Landers, supra note 233, at 165. 
248 See Pitkethly, supra note 223, at 5 (For example, “to decide how much to pay for or invest in a 

business as part of the firms overall financial planning.”).  
249 Meeks & Eldering, supra note 245, at 194 (emphasis added). 
250 John R. Allison et al., Valuable Patents, 92 GEO. L.J. 435, 437 (2004) (“[E]ither because the 

inventions they cover turn out to be worthless, or because even if the invention has economic 

value the patent does not.”).  
251 Pitkethly, supra note 223, at 8.  
252 See Allison, et al., supra note 250, at 438 (arguing data empirically demonstrates that “valuable 

patents differ in substantial ways from ordinary patents both at the time the applications are filed 

and during their prosecution.”). 
253 See id. at 438 (Allison argues six “key characteristics of litigated patents are: (1) They tend to 

be young—litigated soon after they are obtained. (2) They tend to be owned by domestic rather 

than foreign firms. (3) They tend to be issued to inventors or small companies, not to large 

companies. (4) They cite more prior art than non-litigated patents, and in turn are more likely to be 

cited by others. (5) They spend longer in prosecution than ordinary patents. (6) They contain more 

claims than ordinary patents.”); see also Hamel, supra note 240, at 187 (stating that a common 

 



Journal of Law, Technology & the Internet — Vol. 12 

36 

 

 

 Allison’s work provides strong support for general correlations between 

valuable and non-valuable patents.254 Consider figure 7, which graphs QML patents 

by two metrics correlating with patent value: 

 
Figure 7255 

Figure 7 graphs QML patents by prior art cited and the number of claims. 

According to one theory,256 patents plotted toward the graph’s upper right corner 

will tend to be more valuable. 

 

 One problem that exists is how to use this information to more effectively 

make patent strategy decisions. One solution is to use factors correlating with patent 

value, an expert system may be developed to formalize the decision-making process 

altogether. In other words, the expert system can assign a dollar value to any patent 

 
argument is the greater the number and prestige of the inventors on a patent, the higher the patent 

quality because more intelligence and time was dedicated to the patent); R. Polk Wagner, 

Understanding Patent-Quality, 157 U. PA. L. REV. 2135, 2138 (2009) (prestige and time may also 

correlate with the capacity of a granted patent to meet “the statutory standards of patentability – 

most importantly, to be novel, nonobvious, and clearly and sufficiently described.”). 
254 See Allison, et al., supra note 250, at 438.  
255 Supra note 145. 
256 See Allison, et al., supra note 250, at 438 (showing that patents that cite more prior art and 

have more claims are more valuable).  
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or group of patents. Two ways in which an expert system may be developed are 

with a weighted geometric valuation and a V-score valuation. First, one method of 

formalizing human intuition in decision making is a weighted geometric mean.257 

While patent valuation is inherently subjective, the weighted geometric mean 

provides a method to more objectively measure patent value, by flexibly combining 

a variety of objective metrics.258 A second method is to apply a V-Score patent 

valuation algorithm to dataset. 259  V-scores may be particularly efficacious in 

forecasting the content of firms’ organizational learning because of how they 

characterize changes in firms’ technology trajectories.260 As such, the utility gained 

from either algorithm is a standardized method for proactive QML patent value 

optimization. Firms and inventors can optimize the algorithm’s metrics while 

writing a patent and in turn optimize their patent value. Further, one new method 

for patent valuation evolving in research is options pricing. 

 

  

 

 

 

 
257 See Ron Dolin, Measuring Legal Quality: Purposes, Principles, Properties, Procedures, and 

Problems (June 18, 2017) (unpublished manuscript) (on file with Harvard Law School), 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2988647. Formally the weighted geometric 

mean is described:  

 

𝑠 = √∏ 𝐹𝑖
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𝑛
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𝑛
𝑗=1

. 

 

In the above equation s is the document score; n represents the number of factors 𝐹𝑖; and 𝑊𝑖, is the 

per factor weight. The square root is a summation equation designed to calculate the total weight 

for all factors. 
258 Id.at 4, 6. 
259 Kathryn Rudie Harrigan, et al., Using a distance measure to operationalize patent originality 

(2016), https://doi.org/10.1080/09537325.2016.1260106. 
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260 See Kathryn Rudie Harrigan, et al., Using a distance measure to operationalize patent 

originality (2016), https://doi.org/10.1080/09537325.2016.1260106; see also Kathryn Rudie 

Harrigan, et al., Patent value and the Tobin’s q ratio in media services, 43 J. TECH. TRANSFER 24 

(2018). 
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 3. OPTIONS 

 

 Substantive economics scholarship exists analogizing patents to real 

options.261 Real options are a financial derivatives contract262  which create the 

right, not the obligation, to purchase an underlying asset at a defined price.263  Real 

options theory is used in strategic resource allocation to value flexibility. 264 

Essentially, the real options approach seeks to formalize intangible asset 

valuation.265 For example a firm can use options to define the value of an ability to 

close and then reopen a natural resource mine.266 

 

 Every option has a price and the decisions available to a company can be 

characterized as real options and defined in terms of value by elements like exercise 

price or expiration date.267  There are five key elements for options: (1) a right but 

not an obligation, (2) at or before some specified time (3)  to purchase - a call 

option, or sell - a put option (4)  at a prespecified price - the exercise price (5) an 

underlying asset whose price is subject to some form of random variation.268 

 

 One theory is that “[a] patent is like a real option[] . . . because it allows the 

owner to choose between exclusively commercializing the patented invention . . . 

or foregoing commercialization altogether.”269 As a consequence, recent attempts 

in patent valuation efforts have been developed within the real options theory, 

 
261 Christopher A. Cotropia, Describing Patents as Real Options, 34 J. CORP. L. 1127, 1128 

(2009).  
262 Nikitas Stamatopoulos et al., Option Pricing using Quantum Computers, 

4 QUANTUM 291 (2017), https://arxiv.org/abs/1905.02666 (“Options are financial derivative 

contracts that give the buyer the right, but not the obligation, to buy (call option) or sell (put 

option) an underlying asset at an agreed-upon price (strike) and timeframe.”).  
263 Cotropia, supra note 261, at 1128; see also Andrew Chin, Teaching Patents as Real Options, 

95 N.C. L. REV. 1433, 1441 (2017) (“A real option is the right, but not the obligation, to pay a 

predetermined price to undertake a potentially profitable action in the future.”).  
264 See Cotropia, supra note 261, at 1131.  
265 Id.  
266 Id.  
267 Id. 
268 Dr. R. Pitkethly, Said Business School at University of Oxford, Valuation of Patents 

(presentation available at http://www.unece.org/fileadmin/DAM/ie/enterp/documents/k.pdf) 

[hereinafter “Valuation of Patents”]; see also Robert Pitkethly, THE VALUATION OF 

PATENTS 10 (1997), http://users.ox.ac.uk/~mast0140/EJWP0599.pdf; Chin, supra note 263, at 

1441 (“Real options also follow the terminology of financial options in distinguishing between 

European and American types. A European option can be exercised only on the expiration date, 

while an American option can be exercised at any time up to and including the expiration date.”).  
269 Cotropia, supra note 261, at 1128. 
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which recognizes the effect of uncertainty on patent value.270 In fact, economists 

use real options analysis to place specific values on patents. 271  The option’s 

importance in patent valuation is more critical early in the patent’s life.272 

 

 One of the first steps in framing patents as real options is to define the 

patent's purchase price. 273  For example, the patent’s filing fee constitutes one 

component of the patent option price.274 Additionally, drafting fees may also be 

included in the options price.275 The option price also includes the cost of creating 

the invention.276 Further, the patentability requirements define this aspect of the 

option price.277 For QML patents, options pricing may be valuable reflecting the 

need for narrow and specialized skillsets in drafting.278 

 

 In particular, the licensing contract is analogous to a financial call option.279 

A call option provides its owner with the right but not the obligation to buy an 

underlying financial asset at a predetermined exercise price before a given maturity 

date. 280  Thus, licensing contracts provide the licensee with the opportunity to 

acquire the cash flows from the commercialization of the patented technology.281 

For example, when entering a licensing contract for QML technology, the licensee 

may pay an initial fee to acquire the right to develop and commercialize the 

underlying technology.282  As such, some argue that research and development 

funding is the same as purchasing a call option on the resulting technology.283 

 

 Most research focuses on the Black-Scholes-Merton model for options 

pricing.284 The Black-Scholes-Merton model is based on simplifying assumptions 

about the statistical movement of stock prices and market efficiency.285 First, all 

 
270Maria Isabella Leone & Raffaele Oriani, THE OPTION VALUE OF PATENT LICENSES 2 (2007), 

https://www.researchgate.net/publication/252398618_The_option_value_of_patent_licenses.  
271 Cotropia, supra note 261, at 1128. 
272 See Valuation of Patents, supra note 268. 
273 Cotropia, supra note 261, at 1135. 
274 Id. 
275 Id. 
276 Id. 
277 Id. 
278 See id. 
279 Leone & Oriani, supra note 270, at 5.  
280  Id. 
281  Id. (stating the net present value for a patent license is subject to volatility stemming from 

different sources of uncertainty). 
282  Id. 
283  Cotropia, supra note 261, at 1132. 
284 See Chin, supra note 263, at 1443. 
285 Id. at 1444. 
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investors in the options market have sufficient liquidity to conduct certain hedging 

strategies. 286  Second, the market must have sufficient efficiency and liquidity 

allowing investors to complete necessary trades.287 Third, the underlying stock’s 

price movement has statistical properties associated with geometric Brownian 

motion. 288  Perhaps it’s curious similar random rules most rigorously describe 

economic markets, computers, and the physical Universe.289 

 

V. FUTURE 

 

 In a world where most people think technology is a fast-paced game,290 

progress has never been slower. Consider the ideas behind quantum computers 

were conceived in the year 1942.291 The technologies mature evolution is likely 

decades away. But this makes the QML patents awarded to firms today all the more 

important. Indeed, government contracts for research and development are often 

awarded to firms with the financial resources to obtain patents.292 These contracts 

often evolve over time providing substantial competitive advantages to firms with 

more patents.293 As such, the number of QML patents is expected to accelerate like 

the machine learning patent market is evolving.294 Increases in federal funding 

should further accelerate QML technical advancement.295 

 

 

 
286 Id. 
287 Id. 
288 Id. 
289 MARGARET CUONZO, PARADOX 206 (2014) (“Should we consider quantum mechanics a 

progressive or degenerating research program?”). 
290 Conventional wisdom teaches technological progress is driven by the Law of Accelerating 

Returns (LOAR). The LOAR’s application to information technology, Moore’s Law, projects 

exponential trends in technological progress toward an ultimate technological singularity. 
291 R.P. Feynman, The Principle of Least Action in Quantum Mechanics 1, 3 (May 1942)  
(unpublished Ph.D. dissertation, Princeton University) (on file with the CERN Library Document 

Server) (“Plank’s discovery in 1900 of the quantum properties of light led to an enormously deeper 

understanding of the attributes and behaviour of matter, through the advent of the methods of 

quantum mechanics . . . . The fundamental . . . phenomena in nature are symmetrical with respect 

to interchange of past and future.”). 
292 Rocket Patent Strategies, supra note 134, at 9. 
293 Id. 
294 See AI Patents, supra note 56.   
295 Exec. Order No. 13,885, 84 Fed. Reg. 46,873 (Aug. 30, 2019). 
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APPENDIX A. NOTATION SUMMARY 

 
Notation Meaning 

 

𝐻𝑠(𝑠) 

 

The energy of a system. 

 

−
1

2
∑Δ(𝑠)𝜎𝑖

𝑥

𝑖

 

 

The Initial Hamiltonian. 

𝜀(𝑠)(−∑ℎ𝑖𝜎𝑖
𝑧 +

𝑖

∑𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗

) 

 

The Final Hamiltonian. 

𝜎𝑧 

 

Pauli matrices. 

𝐼 

 

Identity transformation. 

𝑋 

 

Negation. 

⨂ 

 

Tensor product. 

|𝑥⟩⟨𝑦| 
 

The outer product of  |𝑥⟩ and ⟨𝑦|. 
 

𝔼[𝑥] 
 

Expectation of random variable. 

𝑎𝑟𝑔 max
𝑎

𝑓(𝑎) A value of 𝑎, at which 𝑓(𝑎)takes its 

maximal value. 
 

𝑟 Reward.  
 

𝜋∗ Optimal policy. 
 

Q(𝑠, 𝑎) Q-function. 
 

(𝑠, 𝑎) State-action pair. 
 

𝜙 Q-function parameters. 
 

𝛾 Discount factor. 
 

𝜋∗ Optimal policy. 
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APPENDIX B. TOP TEN MOST VALUABLE QML PATENTS 

 
Rank U.S. Patent 

No. 

 

Title Owner Year 

1 10,417,553 

 

Quantum-assisted training of 

neural networks 

 

Lockheed 

Martin 

 

2019 

2 10,229,355 Quantum processor and its use 

for implementing a neural 

network 

1QB 

Information 

Technologies 

Inc. 

 

2019 

3 10,402,743 

 

Operating a quantum processor 

in a heterogeneous computing 

architecture 

 

Rigetti 2019 

4 10,339,466 

 

Probabilistic inference in 

machine learning using a 

quantum oracle 

 

Google 2019 

5 10,396,919 

 

Processing of communications 

signals using machine learning 

Virginia 

Tech 

Intellectual 

Properties, 

Inc. 

 

2019 

 

6 10,068,183 

 

 

Bioinformatics systems, 

apparatuses, and methods 

executed on a quantum 

processing platform 

Edico 

Genome, 

Corp. 

 

2018 

7 9,130,651 

 

 

Mega communication and 

media apparatus configured to 

provide faster data 

transmission speed and to 

generate electrical energy 

 

Joseph Tabe 

 

2016 

8 

 

 

8,606,526 

 

Pharmaco-genomic mutation 

labeling 

 

Dennis 

Fernandez 

and Antonia 

Maninang 

 

2013 

9 7,469,237 

 

Method and apparatus for 

fractal computation 

David L. 

Cooper 

2008 
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10 

 

 

10,469,087 

 

Bayesian tuning for quantum 

logic gates 

 

Microsoft 2019 

 




