January 2012

From Blackout to Shock and Awe: Renewable Energy and the Shared Canada-United States Electricity Grid

Dianne Anderson
Roger Salliant
Carol Battershell
Gene Ameduri

Follow this and additional works at: https://scholarlycommons.law.case.edu/cuslj

Recommended Citation

This Panel Discussion is brought to you for free and open access by the Student Journals at Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Canada-United States Law Journal by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons.
INTRODUCTION

Dianne Anderson

MS. ANDERSON: Good afternoon. Thanks for joining this panel. I am Dianne Anderson,1 Executive Director of Case Western Reserve University Great Lakes Energy Institute.2

Today the panel has an opportunity to address many aspects of bringing renewable energy, including the infrastructure, and the assets into an electricity utility marketplace. We have the opportunity to have views that align and some views that may not align, and I always think that it is good to represent both. As for the way we set it up, I almost utilize a walk, in essence, through the supply chain where like an analogue to a Hollywood film you have a writer, producer, director, actors and actresses, and critics.

Today I have the opportunity to introduce Roger Salliant.3 Roger is the Executive Director of Case Western Reserve University’s Fowler Center for Sustainable Value.4 Roger will be able to set a bit of the stage for a course that may have some unacceptable outcomes for us.

4 The Fowler Center for Sustainable Value—About, Case W. Res. U. Weatherhead Sch. of Mgmt., http://weatherhead.case.edu/centers/fowler/about/ (last visited Nov. 6, 2011).
I will then introduce Dave Raskin. Dave is partner at Steptoe & Johnson and he will look at how energy right now is progressing in the United States, energy policy, and some of the regulatory regimes and what it is for.

Then I will actually represent a schematic from Dr. Ken Loparo at Case Western Reserve University, who is currently working on energy research in the electricity grid and the connection to renewables. I will talk a bit about how Case Western Reserve University and its professors work. He is working to bring the cost of renewable energy down.

We then will continue with Carol Battershell, who is a leader in the Department of Energy ("DOE"), discussing energy efficiency and a renewables energy department. Carol, in general, will be able to talk about the role of government and what role it plays in bringing the aspects, in this case renewable energy, to market and specifically about the United States Recovery Act.

Next, Gene Ameduri, who is managing partner of Great Lakes Wind Energy and an investor in bringing wind to Lake Erie, will talk about the Great Lakes project and, importantly, about what it is to be an investor in bringing renewables to marketplace.

It is just today that the DOE is asking everyone around the country to comment on their strategy mission and in that strategy mission they speak of three reasons to have policy in energy. One reason is to enhance energy...
Anderson et al.—From Blackout to Shock and Awe

and national security around it. The second reason is to reduce the environmental impacts. The third reason is to increase United States competitiveness. All of these themes play a role in today’s discussion.

When I think of being here and representing this Great Lakes region, both for Canada and for the United States, it is interesting that in the last twelve months Brookings has put out a report about the incredible assets this region holds. The assets between these countries start with the science exchanged between the universities and national laboratories; these ideas are then cultivated through the region’s manufacturing assets. In addition, there are significant assets such as a large lake for wind, the largest solar energy company in the United States located in western Ohio, vast renewable energy storage sites, and an eighty to ninety year history between this region and the National Aeronautics and Space Administration in this region in bringing storage to market.

With that, I look forward to a good afternoon, and again, thank you for joining us. Roger?

REMARKS OF ROGER SALLIANT

MR. SALLIANT: Thank you, Dianne. This is about Canadian and United States relationships, right? One of my sons-in-law is a Canadian and

See generally Environmental Cleanup, DEP’T OF ENERGY, http://energy.gov/environmental-cleanup-0 (last visited Nov. 4, 2011) (discussing the various ways the Department of Energy engages in energy waste cleanup to reduce environmental impacts).
Id. at 8, 41-43.
See id. (providing a broad overview of the Great Lakes region’s suitability for renewable energy and assets available for cultivation); see also FIRSTSOLAR, http://www.firstsolar.com/en/index.php (last visited Nov. 6, 2011) (noting one of the largest solar energy companies with a manufacturing plant in Ohio); see also Glenn Research Center: Historical Timeline, NAT’L AERONAUTICS AND SPACE ADMIN., http://www.nasa.gov/centers/glenn/about/history/timeline.html (last visited Nov. 6, 2011) (discussing the history of NASA Glenn Research Center, currently located at the Great Lakes Science Center in Cleveland, Ohio).
I can tell you that there is a lot of negotiating that goes on, especially during hockey season, so I have some experience in that.

I assume some of you are lawyers, and one of my daughters is a lawyer. So I have to be careful what I say because I have been trained to be exact, precise, short, brief, and so forth.

With that as the context, I would like to speak to you as a businessperson and to try to remind or suggest to you that as I practiced business in the past, people would spend a lot of time arguing. In fact, they found many hills to die on just looking at X and Y. I used to feel like all you needed to do was to get the quadrant right, and eventually you could converge on the X and the Y. I think when we talk about renewables and fossil fuels, we talk about policies, and I would really like to see us converging on the right quadrant. This talk today is about that and in order to converge on that quadrant, I am going to give you a relatively straightforward simplistic view of some activities that we need consider when we look at making choices, particularly with regard to technologies and specifically about energy. I am also going to look, just briefly, at comparing coal, natural gas, and wind in kind of a pew diagram sense.

There is a lot happening today that indicates it is a tension-filled time. This is not new to us. We have had tension filled times in the past. Business people should be asking themselves, “How do I make money during this tension-filled time, and how can I drive my business to be successful?” A back question to that is, “how do I do well by doing good?” And then a back question to that is, “what does ‘good’ mean?” I am going to try to frame some questions today and present a quadrant definition of what moving to “good” or “better” is like and how to make these choices.

But first, I should tell you, as a member of the Fowler Center for Sustainable Value, what sustainable value really does mean. I am going to be careful because I want to be a little legalistic about this. Sustainable value is the dynamic state that occurs when a company creates ongoing value for its shareholders and stakeholders. The addition of stakeholders is very

23 See The Fowler Center for Sustainable Value, supra note 4.
important. By doing good for society, the environment, and the part of the
stakeholder array, the company does even better for its customers and
shareholders than it otherwise would.25 I can go on and talk about the shift to
shareholder value as opposed to sustainable value, but I do not think I need to
do that here.

What I would like to do is to offer that humanity, for a long time, has
embarked on taking actions to create human systems that eventually come
back and have some consequences. We have created systems, whether they
are energy systems, water systems, social systems, or economic systems.26
And we have done it with the idea of moving forward, but there are
consequences when you do that.27 How do the consequences interfere with
the natural systems that are often taken for granted, that are often transparent
but actually support all living life support systems on the planet?

If you look at the nine boundaries of nature, which have been really
declared pretty well by the Resiliency Institute at Stockholm and published in
2009 by \textit{Nature},28 they basically found that in the last 25,000 years humanity
has thrived because the planet has operated between norms that can basically
be described as the nine boundaries of nature.29 There are not a hundred; there
are just nine.30

If you are interested, there is, just by Googling “nine boundaries of
nature,” a video you can get of people with very impressive foreign accents
explaining to you why this is true.31 The nine boundaries include climate

25 Id.
26 See generally U.N. DEV. PROGRAMME, \textit{WORLD ENERGY ASSESSMENT: ENERGY AND THE}
\textit{WORLD ENERGY ASSESSMENT}] (advocating for changes in global green energy production and
implementation in both developed and developing nations); see also BERNARD H. D USSART ET
AL., \textit{MAN-MADE LAKES AS MODIFIED ECOSYSTEMS} 11-21 (Int'l Council of Scientific Unions
1972) (analyzing human intervention in the natural water system through man-made lakes);
see Barry G. Silverman, \textit{System Social Science: A Design Inquiry Approach for Stabilization
(discussing how social systems, which are man-made, affect social dilemmas); see, e.g.,
STEVEN ROSEFIELDE, \textit{COMPARATIVE ECONOMIC SYSTEMS: CULTURE, WEALTH, AND POWER IN
THE 21ST CENTURY} 8-15 (Blackwell Publishers 2002) (analyzing and comparing the various
economic systems, all of which are man-made, that have emerged globally).

27 See \textit{WORLD ENERGY ASSESSMENT}, \textit{supra} note 26, at 5, 11, 24, 35, and 41 (providing the
consequences of energy shortages caused by ineffective and inefficient energy systems); see
also D USSART, \textit{supra} note 26, at 50-64 (discussing the observed effects of man-made lakes on
biological systems). See generally ROSEFIELDE, \textit{supra} note 26, at 77-191, 197-207 (providing
comparisons between different international economic systems and their domestic and global
implications).

28 See Johan Rockström et al., \textit{A Safe Operating Space for Humanity}, 461 \textit{NATURE} 472,
472 (2009).

29 Id.

30 Id. at 473.

31 Stockholm Resilience Centre, \textit{Planetary Boundaries}, \textsc{You Tube} (Sept. 23, 2009),
change, which we are all familiar with or have some feeling for it. Climate change is governed, of course, primarily by carbon dioxide, methane, other greenhouse gases, and ozone depletion, which has been going up and going down. At the moment, it is relatively steady, but it is affected by carbon dioxide and methane. Another boundary is ocean acidification, which is primarily affected by carbon dioxide and the formation of carbonic acid. Biodiversity loss is a third boundary of nature, which is the rate of species loss. Fourth is fresh water usage, which is getting a lot more conversation today. Both the nitrogen and phosphorous cycles and chemical contamination, which have not been measured yet, either specifically or quantitatively, are also boundaries of nature. Additionally, land system change, or in other words, how much land we are using and the size of the footprint, and what is changing in terms of densification and aerosol loading, are the final two and have yet to be dimensioned.

From a businessperson’s or policymaker’s perspective, you need to be thinking about these boundaries so you do not end up having an unanticipated consequence. This criteria is useful. If you take a look at the state of the world today, you can see that in climate change, biodiversity loss, and the nitrogen cycle, we have begun to exceed the boundaries that have been set up for the last twenty-five thousand years, and that is why they are colored in red.

It would seem to me that if you are going to analyze a process or product design that you should be very weary about aggregating those particular areas and you can see in other areas where we are approaching the problem. So how would I apply this in a simplistic way knowing that what I want to do is to get it right? From a sustainability perspective, if you have a product, say this pen, you should be concerned about where it came from. In other

http://www.youtube.com/watch?v=8dCU6jd-S9Y.

32 See Rockström et al., supra note 28, at 473.

34 See id.

35 See Rockström et al., supra note 28, at 472.

36 Id. at 473.

37 Id.

38 Id. at 472-473.

39 Id. at 472.

41 Rockström et al., supra note 28, at 473-474.
words, it is an extractive source. How is it used? How am I using it in daily practice? How is it going to be disposed of? Where is it going to go? If you think about it and then take a look at the nine boundaries and begin to compare it, it results in sort of a plus, plus, plus. I did not use pluses or minuses in a standard pew kind of diagram; I just simply decided it was tougher to read minuses than it was to read pluses. I just used pluses and the absence of pluses to sort of show the difference in comparison.

Also, I threw in social justice, which I think is intertwined with what it means to “do well by doing good,” and its implications, particularly at the bottom of the pyramid. This is done as tough as it might be from a sustainability guide; this is done by just sitting down, taking a look, and thinking about life cycle analyses for coal, natural gas, and wind. It turns out that if you just simply lay them together, you can begin to see that there are a lot of ways that, for example, coal and natural gas affect climate change. I have to tell you, just as an internal principle, I gave natural gas an extra plus sign because of a recent report released by Cornell that talks about fracking and its implication in terms of greenhouse gas effects. Now, whether this implication is true or not, that is the only questionable piece of data in the report. I do not know yet where it is going to go but, just to give you an example, if you look at coal from an extraction perspective, you even see that wind gets a plus. The reason that wind would get a plus is? Where do we get the carbon fibers? How are they produced? Where do we get the metallic parts? Where do we get the lubricants and so forth, and where do we get the precious metals that might be in the magnetic if you are using magnetic coupling?

In its use, coal is still generating a lot of carbon dioxide and ash and so forth. Natural gas, of course, releases its own carbon dioxide but it is about forty percent less than coal. If you take a look at wind, of course, when it is blowing and when you are generating, then it is actually not creating a carbon footprint.

42 See Anne Gambling, Stakeholder Engagement: The Experience of Holcim, in MANAGEMENT MODELS FOR CORPORATE RESPONSIBILITY, 157, 158 (Jan Jonker & Marko de Witte eds., 2006) (defining raw material as the extractive source for a product).

43 Saillant, supra note 40, at 7.

46 Id.

47 See generally THE WIND FACT SHEET, NEW S. WALES DEP’T OF ENV’T, CLIMATE CHANGE & WATER 12 (2010) (illustrating wind power’s advantages and minimizing its unfavorable effects such as noise pollution).
On disposal, things sort of change; you end up with fly ash from coal.\(^{48}\) Natural gas has, in a sense, a disposal issue because it is also being used as a utility.\(^{49}\) What happens with that concrete asset? I should not have said “concrete asset.” I should have said the asset you use to convert your natural gas into energy at the end of life. There is an end of life issue that is associated with wind.\(^{50}\) And, until that is worked out, you cannot really give wind power a zero. So, if you go through and take a look at what is happening here, if you look at the totals, it basically says that to get the quadrant right, you have to get a total of forty-eight for coal, a twenty-six for natural gas, and a twelve for wind.\(^{51}\) This basically says that even if we are talking about wind from the most idealistic and purest way, we still have plenty of work to do.

Now, this is not meant to be frightening. It is actually very opportunistic because knowing where we are headed and knowing the way to measure the criteria creates incredible opportunities for businesses to see where it can “do well by doing good.” Also, it gives you an opportunity to see how to combine shareholder value and stakeholder value and lets you know the potential.

This is a many decade problem.\(^{52}\) It is not sustainable for a business or an organization to operate in a way that results in unsatisfied customers and no profit.\(^{53}\) And in my belief, when you really think about sustainable value, it means that you know where you are going, you have an idea how you are going to get there, and you know you can never go so fast as to bankrupt yourself.\(^{54}\)

\(^{48}\) See NATURAL GAS, supra note 45.

\(^{50}\) Jan Weinzettel et al., Life Cycle Assessment of a Floating Offshore Wind Turbine, 34 RENEWABLE ENERGY 742, 742-747 (2008) (providing a life cycle assessment for offshore wind turbines and the issues related to their disposal upon their end of life).

\(^{51}\) Salliant, supra note 40, at 8.

\(^{53}\) See generally id. (providing examples of businesses attempting to incorporate sustainability concepts and the effect on their success).

\(^{54}\) See generally id. at 57-60 (describing the dimensions of shareholder value and a related framework for sustainable value).
REMARKS OF DAVID B. RASKIN

MR. RASKIN: One difference between Roger’s presentation and mine, I am a lawyer so words, only words, that is all you get, and I hope most of you feel at home with that.

I want to talk about the electricity industry. I have spent thirty years representing it. I have been involved in some of the major cases in which public policy towards the industry has changed and I think we are in a very interesting and uncertain time. I want to tell you about it.

The first thing I want to say is I want to make sure everybody in this room understands something that is rarely talked about but it is very important. We do not have a single energy issue in this country. There are two: we have an issue involving the use of foreign oil and we have another issue involving electricity. The issue involving the use of foreign oil raises very serious national security concerns and it raises very serious economic concerns. We all know what they are. We have heard about them. While they are very serious, people need to understand that that has very little to do with the electric industry because we only get approximately one percent of our electricity from oil and we could take that number down to zero fairly easily in a short period. The issues on the electric side of the energy equation do not involve foreign oil.

I am sure all of you have watched commercials. Say you are watching TV and someone comes on to say that a terrorist in the Middle East has blown something up and, as a result, there will be a great oil supply disruption. If you are watching MSNBC, it will then segue to, therefore, we need more renewable energy. But, if you are watching Fox, it will segue to, therefore, we need more nuclear power. Whichever station you are

57 See id.
58 See INDEPENDENT TASK FORCE, COUNCIL ON FOREIGN RELATIONS, NATIONAL SECURITY CONSEQUENCES OF U.S. OIL DEPENDENCY 3-12 (2006) (arguing that the United States’ dependence on foreign oil impacts the United States’ foreign policy with volatile countries and forces the United States to compete with other powerful countries on the world market).
59 See NUCLEAR ENERGY INST., NUCLEAR ENERGY AND THE ENVIRONMENT 1 (2011) (“Oil generates less than 1 percent and nuclear produces 20 percent of U.S. electricity. The move by electric utilities to shift a significant portion of electricity generation from oil to nuclear energy reduced emissions and the nation’s dependence on foreign oil.”).
60 See id.
watching, it is all wrong. The two have very little to do with each other and you need to keep that in mind when listening to people talk about what our energy policy should entail. The fact of the matter is that on the electricity side we have numerous options. We have, some would say, an embarrassment of riches; we have a substantial supply of domestic coal and plenty of natural gas through fracking. We even have substantial nuclear power; twenty percent of our electricity comes from this source. Moreover, there are several companies who, with government support, would like to build more nuclear plants. We have substantial hydro-electric capability. We have tremendous wind potential, which is being developed. We have an emerging solar industry whose prices are coming

61 See Green Power Market, ENVTL. PROT. AGENCY, http://www.epa.gov/greenpower/gpmarket/index.htm (last updated June 2, 2011) (explaining that renewable energy differs from conventional power, which includes nuclear power).

64 See id. ("[The United States has] so much coal, in fact, that [the United States] could continue [its] current consumption for 250 years before [it] would exhaust [its] known, economically extractable reserves.").

66 See NUCLEAR ENERGY INST., supra note 59, at 1 (explaining the increase of electricity produced by nuclear energy).

67 Id.

68 See U.S. ENERGY INFO. ADMIN., supra note 62, at 51 ("All new nuclear plants are built as a result of public policies such as PTCs and the loan guarantee programs.").

70 See How Much of the World’s Electricity Supply is Generated from Wind and Who are the Leading Generators?, U.S. ENERGY INFO. ADMIN., http://www.eia.gov/energy_in_brief/wind_power.cfm (last updated Aug. 30, 2011) [hereinafter How Much Wind Generated] ("Maintaining its position for two years in a row, the United States led all other countries in wind power generation in 2009 . . . [W]ind power is expected to continue to grow worldwide because of favorable government policies.").
down very quickly, and we have imports from Canada. I had to throw the last one in.

The fact of the matter is that there is a lot of surplus energy, particularly in Québec, and I think a lot of that, which is surplus hydro, is going to find its way down to the United States fairly shortly if we can get the transmission built for it. The problem on the electricity side is that we cannot agree on a policy. The primary reason for this disagreement is that we cannot agree on how dangerous global warming, or should I say global climate change, is.

I have admitted to Roger a little while ago that I am a skeptic, not about whether this is happening, but whether it is significant. He is already working on trying to rock my world and perhaps he will be successful. But the fact of the matter is that without some further agreement on that issue, it is very hard for us to move forward and that creates a really big problem because our electric system is getting very old. Most of what you will read about our existing nuclear fleet, for example, is about extending the life of very old plants. Our coal fleet is very old and, an area that I am particularly

72 See Canada, U.S. ENERGY INFO. ADMIN., http://www.eia.gov/countries/cab.cfm?fips-CA (last updated Apr., 2011) ("Canada is the most significant source for U.S. energy imports, providing the highest foreign volumes of primary energy and electricity.").
73 See id. ("Québec’s La Grande plant is one of the world’s largest hydroelectric facilities...").
76 See id.
77 Jeff Brady, An Aged Electric Grid Looks to a Brighter Future, NPR (Apr. 27, 2009), http://www.npr.org/templates/story/story.php?storyid=103327321 (stating "[t]he nation’s electricity grid is facing some huge challenges – it’s outdated and unprepared for increasing demand and a future that includes more renewable sources of energy . . . when it comes to electricity, not much has changed since Thomas Edison fired up the first commercial power grid in lower Manhattan on Sept. 4, 1882.").
78 See, e.g., Rebecca Smith, Nuclear Backlash Energizes Old Plants, WALL ST. J., Sept. 8, 2011, http://online.wsj.com/article/SB1000142405311903366504576488553640956660.html (stating "Japan’s Fukushima Daiichi disaster is having an unanticipated effect: It is forcing the world to become more reliant than ever on aging nuclear plants, and if utilities have their way, those plants will run decades longer than envisioned.").
interested in, our transmission grid is undersized and very old technology. It was not built for an interstate electric system where power is traded and moved long distances; this is a serious problem.

The default choice will be natural gas if we go forward with fracking. However, there are a number of environmental organizations gearing up to fight fracturing shale for natural gas. Roger mentioned a Cornell study that came out just a few days ago, which suggested that the carbon emissions associated with natural gas from fracking exceed that from burning coal to produce electricity.

So, we have a battle underway in that area as well. I do not think we will fail to exploit that resource; it is too valuable to us. I think the debate will end with some additional regulation but not an end to fracking.

That being said, we can create a crisis. The one way we can create a crisis is if we say no more coal because of carbon dioxide emissions and global warming, no more nuclear because it is too expensive and too dangerous, and we just obviously had an event which has got people rethinking that, and no more natural gas because the environmental consequences of fracking are too great. If we say no to those three things

79 See Brady, supra note 77.
80 See Tom Doggett, U.S. Electric Grid Needs Major Overhaul: Utility, REUTERS (July 23, 2009, 10:29 PM), http://www.reuters.com/article/2009/07/24/us-usa-electricity-grid-idUSTRE56N0HQ20090724 (stating "[t]he electricity infrastructure delivering power from a variety of generating sources to our homes, businesses and communities is not suitable for today's needs...[t]he challenges that face our nation's energy future simply cannot be met by our aging electric grid."); see also PAUL KOMOR, PEW CENTER ON GLOBAL CLIMATE CHANGE, WIND AND SOLAR ELECTRICITY: CHALLENGES AND OPPORTUNITIES 13 (2009) (explaining that centrally located power plants are not built for "longer-distance and interstate movements of electricity").
82 See id.
83 ROBERT W. HOWARTH ET AL., METHANE AND THE GREENHOUSE-GAS FOOTPRINT OF NATURAL GAS FROM SHALE FORMATIONS: A LETTER 1 (2011), available at http://www.sustainablefuture.cornell.edu/news/attachments/Howarth-ETAI-2011.pdf (stating "[c]ompared to coal, the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.").
84 See Hunt, supra note 81 (noting that shale drilling could 'produce[e] a cheap, 'clean' energy supply that could last for generations').
85 See Smith, supra note 78 ("[a] batch of new reactors had been planned for the U.S. and other nations, but the backlash against nuclear power triggered by the [Fukushima Daiichi] disaster has dimmed prospects for a 'nuclear renaissance."); see also Steven Syre, Nuclear Power: Just too Expensive, BOSTON (Mar. 18, 2011), http://articles.boston.com/2011-03-18/business/29350681_1_new-nuclear-plants-watts-bar-nuclear-power.
86 See JEFF GOODELL, BIG COAL: THE DIRTY SECRET BEHIND AMERICA'S ENERGY FUTURE
and just rely on renewables, we will end up with an electricity crisis because renewables alone cannot get the job done.

What is standing in the way of renewable power? We now get about two percent of our electricity from wind and less than one percent of our electricity from solar.

The demand for wind and solar is created by portfolio requirement laws which require utility companies to get a certain percentage of their electricity output from renewable sources, and that creates demand, regardless of price.

The fact is that the delivered price of renewables is still higher, and in many cases significantly higher, than the alternatives.

Therefore, just allowing the market to work will not work.

What I do not say here, and it is also very important, is that the renewable industry relies on production and investment tax credits and loan guarantees to drive down cost. Those are going away for wind power, unless there is new law, wind power subsidies will be gone by the end of the year. For solar, I think there is another five or six years but with what is going on in Washington with the budget, there is no certainty that those subsidies will exist either.

175 (2006) (describing the impact a crackdown on CO₂ emissions and global warming would have on coal industry).

87 See TED TRAINER, RENEWABLE ENERGY CANNOT SUSTAIN A CONSUMER SOCIETY 2 (2007) (arguing that the "very high levels . . . of energy use that we have in today's consumer-capitalist society cannot be sustained by renewable sources of energy").

88 See How Much Wind Generated, supra note 70 (documenting that 1.8% of the total United States electricity generation, in 2009, is from wind).

89 See Renewable Sources, supra note 69 (stating "[r]enewable energy power plants are generally more expensive to build and to operate than coal and natural gas plants.").

90 Id.

91 See KOMOR, supra note 80, at 12 (stating "[t]he greatest single barrier to significant market penetration for solar PV and CSP is their high costs.").

92 See id.

Perhaps the biggest physical problem is that the transmission grid is unable to support much more interconnection of wind, particularly inland wind, which is much cheaper than offshore wind. Unless we reach agreement on a policy to build out our transmission grid, which I fervently believe we need to do, it is going to be very hard to get much more renewable power on to the grid.

The next problem with renewables is that they are not a source of base load power. You need energy: you turn it on and it is there all the time. We have a base amount of energy that we need almost everyday, almost twenty-four hours a day, and we need power plants that can provide that energy. We cannot rely on solar and wind to be there. They are what is known as intermittent or variable resources. For that reason, they are less valuable from the standpoint of a system operator who is trying to run an electric system that is designed to make sure that the demand is satisfied.

Finally, one of the issues that is really bothering me is state parochialism. The examples are legion where states are approving projects that are much higher cost than they need to be, but they are in-state projects. States look at integrating wind from a single state perspective: they will have the utility in the state, which Massachusetts recently did with a national grid, but pay twenty cents a kilowatt per hour for wind from a project offshore when there is much less expensive wind available in Northern New England. I think there is a real problem here. We have to start thinking about electricity as a

96 See AM. WIND ENERGY ASS’N & SOLAR ENERGY INDUS. ASS’N, GREEN POWER SUPERHIGHWAYS: BUILDING A PATH TO AMERICA’S CLEAN ENERGY FUTURE (2009), available at http://www.awea.org/issues/transmission/index.cfm (stating “[c]urrently, almost 300,000 MW of wind projects, more than enough to meet 20 percent of our electricity needs, are waiting in line to connect to the grid because there is inadequate transmission capacity to carry the electricity they would produce.”).

97 See also THE EUR. WIND ENERGY ASS’N, WIND ENERGY – THE FACTS: A GUIDE TO THE TECHNOLOGY, ECONOMICS AND FUTURE OF WIND POWER 212 (2009) (stating “[o]ffshore wind is still around 50 per cent more expensive than onshore wind.”).

98 See id.

100 See id.

101 See id.

102 See id.

103 See id.

105 Id.
regional and national business and not a local business if we want to get where we need to go. 106

On transmission grid expansion, this is what I have been spending a good bit of my time on the last few years. We have a system where no one is responsible for planning the national transmission system. 107 The Federal Energy Regulatory Commission ("FERC") is trying to fix that. 108 I am not sure if it has legislative authority, but it is doing its best. 109 There are no agreements on the planning assumptions. 110 How much renewables you include in the mix and their location, offshore or onshore, has a lot to do with what transmission facilities you are going to build. 111 So there needs to be agreement on what the electric system is going to look like.

There are huge fights over cost responsibility. 112 When President Eisenhower built the National Highway System, he did not go out and say people on the East Coast will not pay for Interstate 80 from Denver to Albuquerque because they get no benefit from it. 113 It was treated as a social good and we all paid for it through our taxes. 114 But we have not gotten there with respect to electric transmission. 115 Anytime someone proposes a major transmission line, the first big fight is over cost responsibility. 116 We have some people who want to look at every single line that gets built, perform sophisticated analyses about who benefits in relative amounts, and try to

108 See id.
109 See id.
110 See id.
111 See id.
112 See STAN MARK KAPLAN & ADAM VANN, CONG. RESEARCH SERV., R41193, ELECTRICITY TRANSMISSION COST ALLOCATION 2 (2010) (stating "[p]erhaps the most contentious electricity transmission financing issue is cost allocation for new interstate transmission lines – that is, deciding which electricity customers pay how much of the cost of building and operating a new transmission line that crosses several states.").
114 See id.
115 See KAPLAN & VANN, supra note 112.
116 See id. at 1 (stating the “DOE’s Electricity Advisory Committee concluded that ‘cost allocation is the single largest impediment to any transmission development’.”).
allocate the costs to customers based on those beneficiaries to pay principals. That is probably good fundamental economics.117 But it basically stops the entire process in its tracks, and the FERC is trying to convince the industry, and Congress, that the right way to do this is simply to spread the cost broadly.118 When all is said and done, everyone is getting a benefit from the stronger system that exists and, in fact, the reality is that until the new transmission facilities are built, people do not know how they are going to use it.119

The way the electric industry works is if a resource is in place, it can move power. They will start looking at buying power at the other end of that line. Trying to determine, in advance, who the beneficiaries are is kind of a fool's errand and does not even get you to the right answer.120

Finally, there is a question of siting.121 Unlike the natural gas industry, we site all electric transmission facilities at the state level, except for a small amount on federal land where the Bureau of Land Management generally stands in the way and says no.122 As a result, it is virtually, that is an overstatement, it is very difficult to site a large interstate transmission line.123

And the way to describe it is to think about a transmission line that starts in South Dakota with a collector system for South Dakota wind and runs through Iowa. I do not know my Midwest geography well enough but the line runs through the Midwest to Chicago to deliver power to Chicago. Folks in Chicago, folks in the intervening states, and folks in North Dakota all look at that line differently.124 They each have a different view as to whether they are benefiting from the existence of that line,125 and so under the current rules, we are going to have a big fat fight over cost responsibility. Then we

\begin{footnotes}
\footnotetext{117}{See id. at 5-13 (discussing current and developing cost allocation policies).}
\footnotetext{118}{See id. at 13-16 (commenting on FERC’s approach to cost allocation).}
\footnotetext{119}{See Id. at 11 (explaining FERC’s argument in the Illinois Commerce Commission v. FERC case “that every member of the [transmission project] would benefit from the new transmission facilities because the reliability of the entire network would improve”).}
\footnotetext{120}{See id. at 10-16 (providing comments on the complexity of figuring out who the beneficiaries are; for example, “the benefits from a new transmission project may accrue over many years and therefore may not be presently ‘measurable.’”).}
\footnotetext{122}{See id. at 1 (stating that “[a]lthough the federal government has recently increased its authority over transmission reliability, it has, for the most part, left transmission siting decisions in the hands of the states”).}
\footnotetext{123}{See id. (explaining that there are “concerns over loss of local and regional input and control that [would] accompany an expansion of federal power into [transmission siting decisions that are] traditionally reserved for the states”).}
\footnotetext{124}{See KAPLAN & VANN, supra note 112, at 6, 10-13 (discussing the debate surrounding allocation of transmission project costs and measurable benefits in different localized areas).}
\footnotetext{125}{See id.}
\end{footnotes}
are going to have a big fight over siting because someone is made responsible for the cost of transmission and they do not want to pay in their state.126 That is an invitation for the local state authorities to disapprove it or make it so expensive that it cannot get built.

In 2005, Congress passed a law which gave the FERC federal backstop siting authority within what were known as national interest electric transmission corridors.127 The process was supposed to work as follows: Department of Energy goes out and does studies and determines where we have differences in cost and need more transmission.128 In any event, that law did not work and we have to go back to the drawing board.129

\textbf{REMARKS OF DIANNE ANDERSON}

\textsc{Ms. Anderson:} Thank you. I am going to show just one slide and represent at this point the type of research that is going on to lower the cost. The cost of renewables is too high.130 It has to come down.131 We recognize that and it is the reason in academia that we have those researchers that spend years in specific areas.132

There are several academics right now working directly in the area of renewables, a couple to tie directly to Dave's comment.133 One comment Dave made was regarding the intermittent nature of solar and wind. Both of them are now in the new Energy Information Administration results that have been released in terms of renewable energy cost and both are now getting closer.134

126 See id. at 6 (stating "[t]he states, which have primary transmission siting authority, may be reluctant to site regional transmission projects if they believe the costs are not being allocated fairly.").
127 VANN, supra note 121, at 2.
128 Id. at 8 (stating "[t]he Energy Policy Act of 2005] directed the Secretary of Energy to conduct a study of electric transmission and congestion and subsequently issue a report, based on the study, which may designate any geographic area experiencing electric energy transmission capacity constraints or congestion that adversely affects consumers as a national interest electric transmission corridor.").
129 See id. at 8-14 (explaining the controversy over the federal role in transmission siting from the Energy Policy Act of 2005).
130 See Renewable Sources, supra note 69 (stating "[r]enewable energy power plants are generally more expensive to build and to operate than coal and natural gas plants.").
131 See id. ("The U.S. Energy Information Administration (EIA) projects that renewable-generated electricity will account for 17% of total U.S. electricity generation in 2035, up from 9% in 2008 . . . [t]rom a global perspective, EIA projects that renewable energy will be the fastest-growing source of electricity generation through the forecast period to 2035.").
132 See id.
133 See, e.g., FERREY, supra note 99, at 150-52.
134 See ENERGY OUTLOOK, supra note 62, at 21, 76-78 (suggesting that supply, State RPS programs, and federal incentives are making renewable energy more competitive with other
They are in the eight to nine cent range of competing with, or I should say wind is in the eight to nine cent range of competing, solar higher of that, of competing with coal-based electricity. Yet, obviously, they bring an additional issue with intermittency.

A couple things are going on in that area. The one in the top right-hand box is storage. We are operating around a thousand dollars a kilowatt per hour right now, and the cost of storage and those numbers are being requested in Department of Energy and Advanced Research Projects Agency-Energy proposals at the level of a hundred dollars.

So at ten percent of the cost, we recently at Case Western Reserve University have just won a $2.2 million award for a less than hundred dollar cost of a storage system. It happens to be in a capacitor. We have just won an award from Sandia National Lab to also develop a system that costs less than one hundred thousand dollars.

So one key element, storage, is still costing something in order to bring it to market. Moreover, storage costs more than the cost of solar or wind, which would help reduce the intermittency of that type of energy.

See FERREY, supra note 99, at 150-52.

See id.

But see Kevin Mayhood, From the Rustbelt: an Iron-Based Flow Battery – DOE Funds Work at Case Western Reserve University, THINK BLOG (May 27, 2011, 3:59 PM), http://blog.case.edu/think/2011/05/27/from_the_rustbelt_an_ironbased_flow_battery (stating the DOE, through Sandia National Lab, is funding research with a six hundred thousand dollar grant).

See Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS)–Program Description, ADVANCED RES. PROJECTS AGENCY – ENERGY,
However, the substantial reduction in that cost is nearing and we are
currently participating directly in that area.142

The second point that Dave made was on the transmission grid expansion
and it will be intriguing as Gene talks as well about what it is to bring a real
project to bear. Recently, I believe in the New York project, the New York
Power Authority has published figures presuming costs to total something
greater than $400 million for the cost of the transmission and distribution
system associated with bringing wind into that region.143

That is not for this Lake Erie project but it is the one that New York is
talking about.144 So, some of the novel ideas that are being looked at to
change the game, to take away the typical grid transmission and distribution
concept and think of what it would mean to bring wind to shore, being that
the demand centers, at least for these Great Lakes regions, are very close to
that shoreline are not only novel but greatly reduce the need to build heavy
and expensive infrastructure.

Those are a couple of the things directly related to attempting to bring that
cost of wind and transmission distribution down. With that, Carol
Battershell.

REMARKS OF CAROL BATTERSHELL

MS. BATTERSHELL: I am an engineer,145 but I have just words and not
even any slides, so you just have to listen to me.

I am happy to be here. I am a Cleveland native, although I have not lived
here for a bit. I am also a Case Western Reserve University alumni, although
that has been a bit ago as well.146 I had a long career in Ohio and then with
British Petroleum, about ten years overseas.147 Around two years ago, I
joined the government.148
As Dianne mentioned, I am going to talk a little about the government’s role in energy efficiency and renewable energy, how the government supports technology innovation, development, and deployment, and in particular I want to cover what investment was in the American Recovery and Reinvestment Act ("ARRA") which added some impressive funding into this area.¹⁴⁹

First, I will talk about the ARRA itself and then a little bit about what I saw the Recovery Act doing inside the government. There was transformation there just from enacting ARRA. The ARRA was really a very large scale and meaningful down payment on the nation’s energy and environment future.¹⁵⁰

The energy components of the Recovery Act represent the largest single investment in clean energy in American history with the investments of about $80 billion dollars for clean energy across the federal government.¹⁵¹ If you add in the cost share amount, that adds up to about $150 billion.¹⁵² That really is substantial funding. This was through a combination of grants, but also loans and tax incentives, and the Department of Energy ("DOE"), where I recently joined, played a central role.¹⁵³

This $150 billion plus costs, with the government plus private capital, helps catalyze a transformation in four areas.¹⁵⁴ The first is increasing energy efficiency.¹⁵⁵ The second is doubling our renewable energy generation.¹⁵⁶ Third is a restructuring of the transport system and fourth is work on the grid infrastructure, which we have mentioned already in the last couple of presentations.¹⁵⁷

On energy efficiency, again, DOE is making the largest single investment ever in buildings’ energy efficiency in the United States.¹⁵⁸ The Recovery Act expanded tax credits substantially for doing energy efficiency improvements in homes.¹⁵⁹ At the same time, five billion dollars was put into the Weatherization Assistance Program, which provides energy audits in low-income homes and then does the improvements in the homes.¹⁶⁰ So, you

¹⁵⁰ Steven Chu, Sec’y, U.S. Dep’t of Energy, Statement Before the Senate Committee on Appropriations Subcommittee on Energy and Water Development (Apr. 28, 2010).
¹⁵¹ Memorandum from U.S. Vice President on a Progress Report: The Transformation to a Clean Energy Economy to the U.S. President (Dec. 15, 2009).
¹⁵² Id.
¹⁵³ Id.
¹⁵⁴ Id.
¹⁵⁵ Id.
¹⁵⁶ Id.
¹⁵⁷ Id.
¹⁵⁸ Id.
¹⁵⁹ Id.
¹⁶⁰ Id.
get both the benefit of improved energy efficiency in homes where people could not really afford to do that and also help low-income families lower their utility bills.161 The Weatherization Program, as of April, 2011, under the ARRA, has already weatherized 300,000 low-income homes, and we are on track to weatherize a half million by the end of 2011.162 And in addition, there have been dozens of United States manufacturers of energy efficiency products and energy efficiency appliances and some opening of new facilities or expanding existing operations that were funded by tax credits under the ARRA.163 Those are just some examples of the work in energy efficiency.

For renewable energy, the investments in renewable generation and advanced energy manufacturing included things like loan guarantees, manufacturing tax credits and grants in lieu of tax credits, which was a program called 1603, and someone referred to it earlier, that is expiring at the end of 2011.164 The 1603 Program is noteworthy because the government converted tax credits into grants when the economy was having problems, when businesses had revenue challenges they did not have large enough tax bills to take advantage of a tax credit, but grants were valuable.165 That program was converted into a grant and I think it did a lot of good in spurring installation of renewables generation.166 Over 1,800 private companies nationwide have received these tax cuts or cash assistance for clean energy manufacturing or production.167

On transportation, seven private companies and researchers in over thirty states have received grants to help build the American advanced battery and electric vehicle manufacturing industry really from the ground up.168 There

161 See id.

162 Alice Gaston, Secretary Chu Announces Major New Recovery Act Milestone: 300,000 Homes Weatherized, WEATHER ASSISTANCE PROGRAM TECHNICAL ASSISTANCE CTR. (Jan. 20, 2011, 10:36 AM), http://www.waptac.org/blog/?catid=32.

164 Lon Huber, The Importance of Extending the 1603 Treasury Grant Program, AMERICANS FOR ENERGY LEADERSHIP (Dec. 09, 2010), http://leadenergy.org/2010/12/the-importance-of-extending-the-1603-treasury-grant-program/.

165 See id.

166 See id.

167 Cf. Steve Isakowitz, Chief Fin. Officer, U.S. Dep’t of Energy, Statement before the Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, U.S. H. of Rep. (Mar. 17, 2011) (stating that over seven thousand private companies nationwide have now received tax cuts or cash for clean energy manufacturing and production).

are thirty new advanced battery and electric vehicle component plants opening across the country because of these investments.\(^6\) All of the recipients, and this is notable so I will talk about it again later, of this money matched the government investment at least dollar for dollar.\(^7\) Before the ARRA, the United States produced just two percent of the world's advanced batteries but because of the ARRA, we will have the capacity to produce twenty percent in 2012 and up to forty percent by 2015.\(^8\) Before the ARRA, the hundred-mile range electric vehicle battery cost was thirty-three thousand dollars.\(^9\) Because of the high volume manufacturing that the ARRA is spurring, that will be cut in half with the batteries costing about sixteen thousand dollars by the end of 2013 and just ten thousand dollars by the end of 2015.\(^{10}\) Before the ARRA, there were less than five hundred electric vehicle charging stations in the nation and, because of the ARRA, there will be over twenty thousand by 2012.\(^{11}\)

On to the grid, the DOE is making the largest investment in grid modernization in history.\(^{12}\) That is another one of those, in case I am not making it clear, largest investments in this area in the United States history.\(^{13}\) Four billion dollars in ARRA funds have been invested in smart grid projects across forty-six states to help build a more stable, secure nationwide electrical grid, which clearly has issues as we talked about in the last couple of presentations.\(^{14}\)

There are already more than 2.5 million smart meters that have been installed in homes and businesses nationwide to help consumers reduce their

\(^{16}\) See id. at 9-10.

\(^{17}\) Isakowitz, supra note 167.

\(^{18}\) The Recovery Act: Transforming the American Economy Through Innovation, supra note 168.

\(^{20}\) Id.

\(^{23}\) Id.

energy use.178 We are on track for eighteen million total meters being installed through the ARRA.179 The deployment also includes hundreds of digital sensors, 200,000 smart transformers, and nearly seven hundred automated substations, which help the power companies replace units before they fail or at least to respond more effectively to restore service when bad weather knocks down power lines.180

I mentioned before the idea of leveraging private capital. In addition to the government funds injected into this sector, another important element is how the ARRA helped leverage private capital.181 The ARRA has proven successful in drawing private capital off the sidelines to help fund the economic recovery and accelerate green job growth.182

Of the fourteen billion dollars in competitive grants under the ARRA, about ninety percent required some kind of cost share from a project sponsor and these requirements kind of show an appropriate role for the government.183 It is not just investing in innovation but when the government takes this role it also brings in private capital off of the sidelines.184

I had mentioned I would also cover what we saw in the government in terms of the ARRA’s ability to also help transform the government. As an organization, many agencies were able to put funds in the hands of businesses and citizens faster than they typically were able to do.185 There was a big push and momentum to move quickly.186 We have seen to date

\begin{footnotesize}
\begin{enumerate}
\item[178] Shaun Donovan, Sec’y, Dep’t of H. and Urban Dev., Remarks at Greenbuild International Conference and Expo Closing Plenary (Nov. 19, 2010).
\item[179] See generally id.
\item[180] White House Press Sec’y, supra note 175.
\item[183] See generally Matt Rogers, Senior Advisor to the Sec’y of Energy, U.S. Dep’t of Energy, Statement before the Committee on Energy and Natural Resources of the U.S. Senate (Mar. 4, 2010) (stating cost sharing, combined with other funds, supports more than one hundred billion dollars in projects).
\item[186] Id.
\end{enumerate}
\end{footnotesize}
pretty low levels of fraud and abuse through the transparency that was put into the system and, again, we worked to leverage the dollars with private sector contributions.187

Some of the lessons that we learned, and I will go quickly through an example of each where we saw how collaboration helps break through bureaucracy, how competition improves the results, and something about transparency and accountability and the vigilance of management.188

For collaboration, the Administration really could not have done this without making some real changes in how the government agencies worked with each other.189 One example is a project on a manufacturing tax credit that Congress said should be done by the DOE and the Internal Revenue Service ("IRS") together.190 It was challenging, but we just plowed through like it might be possible and turns out that, if you get enough like-minded people who are just going to figure out a way to get things done, you can move things through. It was not simple, but what we managed to demonstrate it was another type of funding vehicle, which is a competitive tax credit, which is not usual.191 Program 1603, for example, was a tax credit that as long as you get in by the deadline, you get the tax credit.192 This was a competitive tax credit and I thought the uniqueness of it was showing that you can use different agencies for their strength.193 So the DOE did the accepting of grants and competitive analysis of them, which is what the DOE does.194 Then the IRS did the administration of the money through a tax credit195 and we worked jointly on what were our strengths.196

187 Id.
188 Id.
189 See id.
190 Henry Kelly, Principal Deputy Assistant Sec'y, U.S. Dep't of Energy, Re-establishing U.S. Leadership in Clean Energy, High Technology Manufacturing (May 20, 2010).
195 See generally Paul Dvorak, IRS to Audit Section 1603 Treasury Grant Payments, WINDPOWER ENGINEERING & DEVELOPMENT (Nov. 6, 2011), http://www.windpowerengineering.com/featured/business-news-projects/irs-to-audit-section-
On competition, I think it is worth noting out that the ARRA was not about earmarks. The grants generally were about competition and finding the best project. Most programs were oversubscribed, so the merit review was very important. In the DOE, Secretary Chu sent a note to colleges, universities, and professional societies asking for experts to help with these reviews, and in total nearly three thousand independent experts contributed and completed about twenty-five thousand reviews of DOE applications.

The other couple things that we saw during the ARRA were both an incentive created by the Administration to be transparent and also some requirements with the ARRA to put things online. There were literally weekly reports on how each project was doing, which you can still see on recovery.gov, and that kind of transparency, I think, was new in the government and allowed people to be held responsible for their particular goals. If you cannot measure things, you cannot really see how people are doing.

In summary, I just wanted to recap that the ARRA was a huge investment of about $150 billion, including government and private matching funds, and the ARRA, in its scale and the urgency, also creates an environment for reform within the DOE and the government overall. These ARRA reforms are now being embedded in the government to be enduring. I think it is

1603-treasury-grant-payments/ (stating that the IRS has jurisdiction over cash grant payments).

200 Id.

201 A New Way of Doing Business, supra note 198.

204 Memorandum from U.S. Vice President on a Progress Report: The Transformation of A Clean Energy Economy to the U.S. President (Dec. 15, 2009).

worth noting that President Obama put into the 2011 State of the Union address that we cannot win the future with a government of the past.\(^{206}\) Thanks.

REMARKS OF GENE AMEDURI

MR. AMEDURI: I am Gene Ameduri, also a Case Western Reserve University alumni,\(^{207}\) and my family, my daughter, son, and wife all went here as well.

I also want to especially thank all of you who came down here from Canada. I want you to know that I live in the eastern part of Ohio\(^{208}\), and just to report to you if you have not been following the Stanley Cup, and I support this team, the Pittsburgh Penguins did win.\(^{209}\) I am anticipating another win tonight and if any of you know whether Sidney Crosby will be back, we are hoping to have him in the second round.

Anyway, that kicked off one of the things I wanted to say. I am going to present this from the business side. We are working on a project in Lake Erie right now that other Canadian friends were really hot on moving forward.\(^{210}\) This project involves the northern part of Lake Erie\(^{211}\) and I know with all of the changes in the government’s thinking, that it has been put on hold, but we have had a number of contacts from people in Canada just kind of following very closely what we are running into, and how we are progressing through all the issues associated with putting offshore wind in Lake Erie.

I will go through this fairly rapidly, but just so you understand, again, unlike what is going on in Europe, the offshore wind industry right now is really to support economic development.\(^{212}\) These projects initially are not about energy; they are about job creation.\(^{213}\) I think the thing that we want to get across to all of you and especially with the people on the panel with me, is that these initial projects, the first one that we are going to be building is about twenty-five to thirty megawatts, which is five to six turbines out in the

\(^{206}\) Barack Obama, President of the U.S., State of the Union Address (Jan. 25, 2011).

\(^{208}\) Id.

\(^{211}\) Id.

\(^{213}\) Id.
water.214 The project is all the wrong size.215 They are way too small.216 They are not scalable.217

When you look at what we have to do from a regulatory standpoint, from all the other studies we have to do, environmental and what not, and whether we build a thousand megawatts or we build thirty megawatts, the price or the cost to do it would be about the same.218

To get this thing moving, what we have done is we have worked with a whole group of stakeholders, and some of these are on the screen right now.219 You can see my alma mater is in the center there, especially on the research institutions, but we have got a whole lot of stakeholders in the State of Ohio as well as a couple of very, very large companies, General Electric and Bechtel, the largest construction companies in North America involved, and we are going to move this project forward.220

Now, one of the things that is critical to this, though, is the economic development.221 The State of Ohio is very interested in what is going on from the standpoint of economic development and job creation, and I want to give you all a little bit of a history of what is going on in this project.222

Back in 2004, the Cleveland Foundation, which is a philanthropic group in Cleveland, provided a relatively large grant to get this study started and tried to identify whether there were any show-stoppers to put offshore wind in Lake Erie, off the shore of Cleveland.223 The result of that study basically reported that we had a lot of things going for us.224 We have a very shallow lake.225 We are going to be putting these turbines in about seventy feet of water, or twenty-five meters.226 We do not have hurricanes.227 We do not

214 Id.
216 Id.
219 Ameduri, supra note 210, at 9.
220 Partners, supra note 212.
222 Id.
223 Id. at 28, 48.
224 Id. at 28.
225 Id.
226 See generally DLZ, Great Lakes Wind Energy Center Feasibility Study 3 (Aug. 2008),
have lots of major storms. We do have ice that they do not have in the Atlantic or up in the North Atlantic. But the other key to this, and it was mentioned earlier, is that we are not very far from population, so our transmission lines are very, very short relative to bringing wind from South Dakota to Chicago, for example. So we feel very good about some of those things.

We have been progressing through all of what you see on this screen, to the point where our firm is a partnership of a couple of companies and where we now have a lease option on square miles out in the lake to go ahead and put these turbines in. We are now in the process of doing all the geotech, geophysical, the birds and bats, and the aquatic studies that will make the various environmental agencies come through the loop with what we are doing.

Again, as I talked about, this is all about jobs. These are ports that are not in the United States right now, but you will see kind of in the lower left hand a photograph over in Europe, and you see the size and the requirements of these ports for these kinds of facilities. Remember the turbines that we are going to be putting in, unlike some of the ones you have seen on shore, the diameter of the blades are approaching 350 feet or a hundred meters.

available at http://www.ohgeosoc.org/presentations//200904/GeologicalStudy.pdf (2008) (stating that bathymetric data collected for the mid-lake airport feasibility study suggests that, over most of the study area, the water depth is between forty and seventy feet, or twelve to twenty-one meters deep).

COTICCHIA & COTINGTON, supra note 221.

Amneduri, supra note 210, at 5.

Wallace P. Erickson et al., Avian Collisions with Wind Turbines: A Summary of Existing
The blades themselves just cannot be moved around on conventional roads. They are all going to be brought in, either manufactured close to the shore or brought in by ship. Same thing with the turbines—they are very, very large.

The initial group of turbines we are going to put in are four to five megawatts each, and this is how we are going to start driving the cost down. As we continue to build larger and larger, scale will help us start driving the cost down.

The initial project, though, the study that was commissioned by the non-profit Lake Erie Energy Development Company said that this initial phase was going to produce between four to six hundred jobs in Ohio. And that is the whole supply chain, that is the construction of the foundations, that is the maritime, and all of those things associated with that. That does not include the turbines.

The turbines will not be manufactured in the United States. Right now General Electric’s plant for offshore turbines is in Norway and so they will be coming in during this initial phase. As we build up, if we are successful

237 Id. at 10.

238 Id. at 3.

with this, and if we can scale and get the price down, the hope, ultimately, is to build a manufacturing facility in Ohio. But that remains to be seen.

Again, just to have a feel for how many jobs are actually being created in Europe, and I know some of these numbers are pretty hard to see, but basically the thing that I would say to you right now, this is a hundred billion-dollar industry between Great Britain and the continent. They do have a very, very aggressive feed-in tariff, and that is what is driving this. In the United States, what we are using to get the Power Purchase Agreement is basically legislation to take advantage of the energy credits, but this is a real industry in Europe.

Right now there are over forty thousand people employed in this industry, and if you look at some of the numbers down on that last line, in the year 2030, it is expected to be almost 215,000 people employed in this industry, so it is real. The thing that is scary to all of us here in the United States, and to you in Canada as well, is that the next big surge is going to be the Chinese.

The Chinese are already designing turbines that are well over eight megawatts with a goal of ten megawatts per turbine. They are going to be deploying the turbines substantially in Asia and that is one of the things that is certainly a concern. I know we were talking about the Canadian content, and the United States is certainly concerned about that as well, and we are potentially going to have turbines manufactured in China brought into here.

244 See generally Angela Beniwal, Manufacturing Facilities in Ohio Benefit from the Wind Supply Chain, NORTH AMERICAN WINDPOWER (Jan. 6, 2011), http://www.nawindpower.com/el07_plugins/content/content.php?content.7145 (explaining how the wind power supply chain benefits Ohio).
245 Ameduri, supra 210, at 5.
248 Ameduri, supra note 210, at 5.
Again, from an offshore standpoint, bringing the turbine from China or bringing a turbine from Europe, there is not a whole lot of difference there.253 So what we really have got to do is advance the ball in the United States and Canada as rapidly as possible.254 One of the things we would like to point to, because we are in a port here in Cleveland and there is one in Lorain which is a little west of here and one in Ashtabula which is east of here, is that all have substantial port facilities that are all pretty much dead.255 There is nothing coming in and off of them in Cleveland.256 I think it is eight freighters a month, which is not a lot, a little more than one a week.257 But we are trying to take advantage of the existing port infrastructure; same thing over in Ashtabula and Lorain.258

These pictures here are actually Bremerhaven over in Germany, and this was a massive port from World War II that really just laid fallow for many, many years, and now because of the offshore industry in Europe, it is now a very, very thriving port.259 This is what we are hoping to see here off of the shore of Cleveland.260

253 See generally Supply Chain: The Race to Meet Demand, ALT ENERGY STOCKS, 34 (Jan./Feb. 2007), http://www.altenergystocks.com/assets/Wind%20Directions.pdf (discussing the advantages and disadvantages of obtaining components from abroad).

256 Latest Port Arrivals, supra note 255.

257 Id.

259 Ameduri, supra note 210, at 6. See also Elize de Vries, Boomtown Bremerhaven: The
Again, this is all about job creation initially. As we put this first project in, we will demonstrate that we are not harming the environment, the industry does produce the jobs that we are talking about, and there is a path forward to getting costs down. We anticipate this kind of activity being on the shore of Cleveland.

The photograph on the left is a sample of the most likely kind of foundations we will be using. Those are called gravity foundations. Each one of those weighs about 1,300 tons of concrete and steel. They would be floated out into the lake and then sunk in the appropriate locations. You can get a feel for the size of those because, it is kind of hard to tell, but the top of that main one in the center right at the very top there is a workman standing. So it gives you a feel that it is almost seventy feet right there.

Again, as we talked about earlier, I have been in the electricity industry a long time, but I think one of the things that I struggle with all the time is that offshore wind is very, very expensive. Onshore wind is very expensive. Additionally, solar is expensive relative to what is going on in a base coal or base nuclear and all that.

261 See PORT AUTHORITY, supra note 258, at 29 (discussing how improving the Port of Cleveland fosters job creation).

263 Wind Energy, supra note 260.

266 Id.

267 Id.

269 Id.

270 Jason Morgan, Comparing Energy Costs of Nuclear, Coal, Gas, Wind and Solar, NUCLEAR FISSIONARY (Apr. 2, 2010), http://nuclearfissionary.com/2010/04/02/comparing-
But if I build a nuclear plant today knowing how the industry works, if I started today it would not be up and running for ten years. In 2021, what would the power coming into that be? I will tell you right now, no one would bet on it, first of all, but it certainly is going to be more than five cents a kilowatt per hour.

I think those are the kind of numbers we always hear from our utility friends saying, "Why would I buy offshore wind right now at twenty-five cents a kilowatt per hour when I can produce it from coal for five cents or nuclear for four cents?" and that is true. But that nuclear plant that they are going to build, and I think you said there might be two that are progressing, the only way they are going to be built is with federal loan guarantees. But what is the power going to cost from those? What is the power going to cost from clean? What is the power going to cost from even our nuclear plants today if we have to go in and refit them with some of the safeties we are going to have to do based on what happened in Japan?

We anticipate, and some of this comes from the Department of Energy thinking as well, the target is to get offshore wind down to twelve cents in 2020. For us to get there, we have got to have that first project and then a larger one and a larger one and a larger one. We have an option for Ohio. Right now we are poised very, very well.

See Morgan, supra note 271 (discussing cost of the different energy sources); see also Herman K. Trabish, How Much Will Offshore Wind Really Cost?, GREENTECH MEDIA (Mar. 17, 2011), http://www.greentechmedia.com/articles/read/how-much-will-offshore-wind-really-cost/ (discussing the perceived costs of offshore wind energy compared to other sources).

See generally Wind Energy Driving Down Consumer Electric Rates, CLEAN TECHNICA (Oct. 25, 2011),
We have an awful lot of supply chain manufacturing already in Ohio.279 We have a population base close to the lake.280 We are part of what is referred to as PJM Interconnection LLC, which is the largest independent system operator of the grid, in the United States.281 We are getting power from the lake into that grid, which allows us to actually send it anywhere in the eastern part of the United States.282 We really want to make this the epicenter283 and, again I think what we are going to do here is going to enable our Canadian neighbors to take advantage of what we learn in Lake Erie, relative to all of the things that we are going to do impacting the environment as well.284

Specifically, the turbines will be located about seven miles offshore from Cleveland.285 You can kind of see that up in the far corner. We are going to be putting five to eight turbines out there, a total of about twenty-five to thirty megawatts, a very, very small system.286 We are going to produce enough power and enough energy to do five thousand to six thousand homes.287 A lot of things have been done already down that left-hand side.288
Those are the kind of items that take anywhere from one to three years, so the good news is a lot of that has been done.289 It allows us to potentially, unless we see some additional show-stoppers, get this thing built and up and running in late 2012 and in 2013.290 Our hope and our plan is to have this in commercial operation by late 2013, early 2014.291 We have a lot of pieces in place to get that done.292

The kind of the things we have to get done in the short term, like I said, involve working on legislative activity right now in the State of Ohio on coming up with a methodology to take advantage of the existing energy credit rate structure to convert that to offshore and help us put ourselves in a position where the energy will be sold into the grid through the utility companies by taking advantage of the rate structure.293

We have got to work very closely with the Ohio Department of Natural Resources on taking our lease option that we have right now and converting it to a lease.294 These are all submerged land leases for land under the lake and then the Ohio Power Siting Board as well, so we have a lot of work to do.295 I think what is difficult with these projects is that we are the first, so there is no cookbook.296 There is no template, and anytime we sit down with whatever agency, it is starting from scratch, educating, and then working out that this is not a dock.297 That is what they really want to force us into for that kind of impact and what not, and so many, many things here are so different that it just takes a long time.298 Thank you very much.

289 Id.
292 See generally \textit{Wind Energy}, supra note 260 (discussing reports and steps undertaken to start and develop the project).
293 See generally \textit{Partners}, supra note 212 (describing LEEDCo’s collaborative efforts with General Electric to work on public policy issues relating to offshore wind energy).
295 Id.
297 Id.
298 Id.
DISCUSSION FOLLOWING THE PANELISTS' REMARKS

MS. ANDERSON: I see we have a few minutes for questions and answers. Please, are there any for panel members?

MR. NORTON: I am Roy Norton. I live in Detroit, and I did not know that I could answer your question, Jim. In Detroit, they think they know what the Stanley Cup is. They expect they will win it every year.

I am the Consul General of Canada to Ohio. I appreciated Mr. Ameduri's comments about the integrated economy. You did not provide the stats; I will. Last year there was thirty-one billion dollars in two-way trade between Ohio and Canada, where Ohio continues to enjoy, as it has routinely for years, surplus in that trade. The thoroughly integrated economy supply chains are totally integrated. I am hoping the Department of Energy ("DOE") is listening because, in the American Recovery and Reinvestment Act, the spending that you described at great length was conditioned to buy American provisions, which we did not like and which we proceeded to negotiate. We spent a year negotiating with the United States Administration.

A reciprocal arrangement was struck whereby Canada and the United States would have access to subnational procurement on a national treatment basis above a certain threshold, and what we are experiencing now, not far from here in Mahoning County, Ohio in fact, is a phenomenon whereby a DOE funded project is being broken, it would seem, into smaller bits and pieces perhaps. I can only say perhaps, so as to evade or avoid the threshold requirements, meaning the Canada and Canadian firm that is

300 Id.
304 Id.
305 Id.
partnering with an Ohio firm in Northern Ohio is being discriminated against in terms of being able to win on the lowest bid basis that project. It would be like, to play on your introduction, Canada saying that Sidney Crosby, if he were well enough to play, could only play providing Pittsburgh were not playing a Canadian team.

MR. CUNNINGHAM: That is the rule we Washingtonians want.

MR. NORTON: Which we, of course, never do. So take note, take it back, if you would, and make some inquiries. We hope to get this resolved favorably.

MS. ANDERSON: Thank you.

MR. ROBINSON: Here, here.

MS. FICKLING: Meera Fickling from the Business Institute. Sir, I just had a question for the panel and I guess anybody else in the audience who wants to take a crack at this about renewables and reliability. Obviously, there are many countries or at least a few countries in Europe that have far higher percentages of generation of renewable energy than the United States does, and far higher percentages from wind and solar than Canada. I guess my question is, with the intermittency issue inherent to renewable energy, what is the threshold in terms of percentage of generation past when you start to have serious reliability issues?

MR. RASKIN: First of all, I think it is as much a cost issue as reliability issue. You can firm up the intermittent power but you have to build other power plants, particularly natural gas plants with automatic generation control, which can fill in when the plants go down. So it is a cost issue as much as anything else.

308 Id.

309 Norton, supra note 302.

313 Id.

314 Id.
That being said, we have had one incident, so far in Texas, where the wind just stopped blowing.315 I think something like 1,500 megawatts of energy just disappeared, literally in minutes, and the system voltages went down.316 There were near-cascading outages but they managed to pick the system up.317 My guess is they are learning from that, and so the next time it happens, then we will have to deal with it.

But the North American Electric Reliability Council, which is responsible for reliability and establishes the rules, and I worry about this, they are studying that very question and trying to figure out how to do it.318 I think at the end of the day it is about money and not about the reliability, as most reliability issues end up being about money.319 But as to the cost, it has to be considered when you compare the cost of wind versus something like a gas plant or a coal plant, which is not a variable.320

MR. CUNNINGHAM: Dick Cunningham of Steptoe & Johnson.321 I would like to pursue this thing, feed-in tariffs for just a moment, because I have looked at this as a trade issue. The Chinese use it extensively and have used it quite successfully to subsidize the demand side for wind power and have built up what is probably the largest wind power industry in the world.322 The Spaniards did the same thing, although apparently there is a bit of a collapse coming there.323 From a World Trade Organization standpoint it is much cleaner, subsidies to producers are much more difficult to sustain under the World Trade Organization’s old rules than subsidies to consumption.324 So why are we not doing this?

316 Id.
317 Id.
319 Anthony, supra note 312.
320 Id.
MR. RASKIN: Two reasons. Number one, we have a philosophy in this country to run things efficiently and subsidies are not generally viewed positively unless a politician can hide them. Second, more importantly, we set electric rates to consumers at the state level and not the federal level. The responsibility to establish these kinds of feed-in tariffs for retail electric service would go to the states, and in that circumstance, I think it is very hard to establish a national policy.

MR. AMEDURI: Let me add to that as well, even though I have some advantage with the Department of Energy. I know she does not recall seeing that. One of the biggest problems we have in the United States is that there is no national energy policy. Ohio has a renewable policy, Pennsylvania has one, New York has one, and every state has something different.

In reality what is happening is we are driving it by having each state’s own renewable policy, and in driving it upstream with the federal government and to really get to your point, what we really want to do is, we want to go in the other direction as well.

We want the federal government to set the policy on some of this. I agree with this gentleman that oil and electricity do not quite mix, but at some point in time, we have got to start putting values on our military supporting what is going on in the Middle East. How much does that cost us? How much does that add to the cost of gasoline? How much does that add to the cost of everything that we are doing and becomes more of a political issue than an energy issue? But at some point in time in the United

327 Id.
332 Id.
States, we are going to wake up and develop a federal policy, but right now it is just being driven by each state.333

One of our worries in Ohio is that state policy could change three years from now.334 We are building, in this little farm that I showed you, with $150 million dollars, and the bankers want the twenty-year deal and they ask how long are we will need the money going forward.335 We say, “Well, we think . . .” and they say, “We do not invest on ‘we think.’”336

Those kind of issues are across the board, we have got to settle here, and same thing with what is going on in Canada.337 There was going to be 4,000 megawatts in Lake Erie and now there is going to be none on your side of the lake.338

MR. CUNNINGHAM: For those of you who, unlike me, know the economics of the industry, putting aside the fact that it is state level versus federal level, if we had an energy policy, would we be better off using more feed-in tariffs, or should we stick with subsidizing producers? Because right now you have a problem.

MR. AMEDURI: Exactly.

MR. CUNNINGHAM: It is not economically competitive.339 You can either force the price of carbon up,340 you can use feed-in tariffs to create the demand unofficially or you can subsidize the production, and I am not sure I have a view as to which is, just from an economic standpoint, better.341
know darn well, from a World Trade Organization perspective, which is better, which would be the feed-in tariffs.\footnote{See The WTO and Subsidies, supra note 324 (discussing the World Trade Organization's role in governing subsidies).}

MR. RASKIN: I would probably differ from the others on the panel, Dick, but I think establishing a price on carbon, if we can agree that there should be a price on carbon and what it should be, would be a good thing because that will be a real economic.

That is an externality that is not being priced into the cost of coal power if you believe that global warming is a serious problem, but we cannot agree on that.\footnote{See generally Scott Malone, Coal's Hidden Costs Top $345 billion in U.S.: Study, REUTERS (Feb. 16, 2011, 11:57 AM), http://www.reuters.com/article/2011/02/16/us-usa-coal-study-idUSTRE71F4X820110216 (discussing the hidden costs of coal power).} But providing subsidies, I just think it is a fool's errand. I would rather allow the electric system to be run as efficiently as possible, and put our money into research and development so that we bring closer the day when we do not have to subsidize these other options, and I think that is the better way to do it.

We are more likely to win that way than trying to pick winners and losers. My understanding is that the feed-in tariffs have been abandoned in much of Europe because they have been a failure.\footnote{See generally Voosen, supra note 323 (discussing Spain's use of feed-in tariffs and resulting consequences).} They are bringing forth uneconomic sources in electricity and they were unhappy with them.\footnote{Id.}

MS. ANDERSON: And perhaps to complete this one, because I do know we are running against time, I understand we are leading into a panel that is going to talk about cost of taxes and I think it will be a very good hour-and-a-half to come.

So thank you for both views and please stay around because what is coming next is just on that topic. One last question if I could, please?

MS. LUSSENBURG: My question builds a bit on the discussion we have just had but not in terms of whether it should be cap and trade or carbon tax. It seems, when you listen to the presentations today, that it is inevitable that we are going to have cleaner, greener energy and it costs more.\footnote{See Taylor, supra note 269 (discussing the high costs of wind energy); see also Morgan, supra note 302 (discussing the high costs of solar power).} Everyone
seems to accept that. The question is when is that going to happen? 2015 or 2020 or 2025?

When we listen to an issue that is like the one that Mr. Ameduri has put forward, the question I have is, why are we sticking our heads in the sand? Europe has been quite successful with wind energy. We have a tremendous issue in Canada, the NIMBY issue or "not in my backyard." But in Europe, it is typically not in people's backyards either; it is off in the North Sea or somewhere else, or out seven miles out in Lake Erie.

We have lots of wind on the East Coast and lots of wind on the West Coast in both of our countries. So why are we not getting on with that and just recognizing the reality because there is this huge time period. So for sometime there will be a not-for-profit operation. At some point, if governments can support the GMs of the world, governments can support these kinds of initiatives. When they become financially profitable, where the cost of other energy has gone up significantly, you sell the thing, and you make a lot of money, and you recoup your costs, right? Hopefully, you make a huge profit if you are business minded. I continue to struggle with why we are not more forward-looking here because it is inevitable it is going to happen.

MR. SALLIANT: We have got an almost inexhaustible supply of domestic natural gas that can be produced at about four or five dollars.

MS. LUSSENBURG: But it is not green.

347 Id.
354 See generally Critical Size and Location Choice, supra note 352 (discussing the profitability of wind farms).
355 Id.
MR. SALLIANT: It is a great option, and unless we have agreement that we should not pursue it and we should put our money into renewables, we are not going to get anywhere with it.358 That is having an energy policy, and people just disagree.359

MS. BATTERSHELL: Yes. I think while we have a range of views on things, what we all come together on is that we need a national energy policy and, in the absence of that, you really struggle to push an overall policy down the road.360

MS. ANDERSON: I think it is a great wrap-up on national energy policy. I think an equally good wrap-up in terms of your timing question. We all probably share a common belief that there is no either-or, that we need all types of energy, and it includes some of these renewables and many of them to be viewed as well as natural gas fossil fuels.361 I thank you for attending. I thank the panel for their participation.

359 Id.

360 Id.

361 Id.